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Competition, no matter in what area, is definitely something natural to all of us, but 
cooperation is another vital activity to move the society further. 

It was the aim to cooperate that made the COST Action CA15225 “Fractional-order 
systems - analysis, synthesis and their importance for future design” to initiate and 
strengthen networking among research groups and individuals dealing fractional (almost) 
anything – covering math, systems design and their utilization to practical devices, 
although not being necessarily recognized by the users but taking advantage of it. 

This book looks back the 66 months, the life-time of the COST Action CA15225 and is 
divided in two parts. The first summarizes the activities and events organized by the 
members to interact between organization, teams and even individuals and also advertise 
the fractional approach to a broader audience. The second part is represented by short 
papers giving an insight to research conducted by COST Action members contributing 
to specified Work Groups. 

Thank you to all participants active during the COST Action life time for sharing their 
knowledge, experience and enthusiasm in research. 

 
 
Jaroslav Koton 
CA15225 Action Chair 
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Shortly about the COST 
 

COST (European Cooperation in Science and Technology) is a funding organization for research and innovation 
networks. These research and innovation networks are called COST Actions and help to connect research 
organizations, groups and individuals not just from Europe but also beyond. It is just about the members of the 
COST Action representing their country or institution how much they advertise the objective of the COST 
Action and take advantage from sharing their ideas in science and technology fields within the initial (introduced 
at the Kick-off Meeting) and hopefully during the life-time of the COST Action further expanding community. 

Through COST Actions, different types of events and activities are organized (meetings, workshops, training 
schools, internships etc.), whereas the participants are supported from the COST Action budget. It is important 
to highlight that the research itself is basically not financially supported (at least not within the CA15225) from 
the budget of the COST Action. The budget is rather used to reimburse travel and accommodation expenses of 
active members serving as volunteers to COST Action willing to organize events, be tutors or trainers. 

Every year COST runs a significant number of COST Actions. You may browse the current list and look for 
the opportunity to become member of the network linked to your field of research. If you do not find an 
appropriate COST Action, do the big step and submit your own proposal as we did. 

For more reading about COST, please visit their web. There is all the information you need to start taking 
advantage of networking! 

 

 

 

 

 

 

 
  

https://www.cost.eu/
https://www.cost.eu/cost-actions-event/browse-actions/
https://www.cost.eu/funding/open-call-a-simple-one-step-application-process/
https://www.cost.eu/funding/open-call-a-simple-one-step-application-process/
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COST Action CA15225 
Fractional-order systems have lately been attracting significant attention and gaining more acceptance as 
generalizations to classical integer-order systems. Mathematical basics of fractional-order calculus were laid 
nearly 300 years ago and since then have become established as deeply rooted mathematical concepts. Today, 
it is known that many real dynamic systems cannot be described by a system of simple differential equations of 
integer-order. In practice such systems are encountered in electronics, signal processing, thermodynamics, 
biology, medicine, control theory, etc. The COST Action CA15225 favors scientific advancement in the above 
mentioned areas by coordinating activities of academic research groups towards an efficient deployment of 
fractional theory to industry applications. 

The COST Action CA15225 shows that the fractional calculus and its utilization is beneficial in different areas. 
The fractional-order systems, analogue or digital, used in control and regulation or specific signal processing 
may be seen as common, but mainly at the level of research community. The implementation of fractional 
approach to industry did not start running this COST Action but we believe that through the Action Objectives, 
Deliverables and other Additional Outputs, the CA15225 enabled to bridge separate research fields and 
disciplines to present interdisciplinary approach to scientific research and foster multidisciplinary breakthroughs 
beneficial to broader society. 
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Action Objectives 
Although fractional calculus is primarily the domain of mathematicians, the COST Action CA15225 was 
understood to be multidisciplinary. Already by planning the COST Action, the activities were divided into Work 
Groups that although being individual expected the cooperation in between. As a result, four Work Groups were 
set to follow the prime objective: 

Drive the European research and development in the field of description and implementation of 
fractional order systems in emerging fields of engineering and biomedical science, by 

overcoming the lack of common design and performance evaluation methods oriented on 
integer-order systems 

and further contribute to both research coordination objectives: 

• Definition of optimization steps leading to efficient implementation of FO systems 
• Improving characteristics of fractional-order controllers that can be employed in different industrial 

loops or in electro-mechanical systems 
• Development of tools to define dynamic simulation models, control schemes and algorithms 
• Design and implementation of FO controllers for industrial processes 
• Design and characterize new fractional-order elements in order to obtain robust and commercial 

devices 
• Utilization of fractional-order adjustment rule to model reference adaptive control in engineering 

applications 
• Implementation of fractional-order digital/analogue function blocks especially in medical signal 

processing 
• Penetration of the fractional-order models and systems in bioengineering and biomedical applications 
• Characterization of properties preservation of non-integer order control and dynamical systems under 

discretization; new types of variational integrators 

and capacity building objectives: 

• Establishment of European-wide scientific and technology knowledge platform in order to instigate 
interdisciplinary interaction for the development of innovative fractional-order systems 

• Bridging separate research fields and disciplines to present interdisciplinary approach to scientific 
research and foster multidisciplinary breakthroughs 

• Ensure Early Career Investigators to participate in the Action within dedicated dissemination and 
formation activities such as workshops or STSMs and give them the best possible return in terms of 
scientific knowledge, research direction and coordination skills 

• Increase the gender balance in terms of researchers involved in Action activities, both in terms of 
technical and scientific contribution as well as of research direction and Action governance 

 

Deliverables 

Within each Work Groups (WG), the Tasks were defined and were solved by its members inside the Work 
Group or through efficient cooperation between the Work Groups to contribute to the defined Deliverables and 
also the overall Objectives of the COST Action. Although all Deliverables are understood to be delivered by 
the end of the COST Action CA15255, the individual topics are not closed and still offer possibilities for further 
improvements and progress, just being to be reached already out of this COST Action period. In total, 21 
deliverables (Ds) were identified, linked to specific WG. For each deliverable, please see short summary. 

Development and implementation of a general framework for global, non-adaptive identification of 
fractional and non-rational systems in general (WG1, D1) 
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A general framework for global, non-adaptive identification of fractional and non-rational systems in 
general has been developed in several specific directions. The first is non-parametric analysis, in which 
an overall shape of the frequency characteristic is analyzed first, and then a suitable explicit or implicit 
fractional order model is proposed and optimized by means of a PSO algorithm. Relevant study was 
reported in doi: 10.1016/j.ifacol.2017.08.2084 in collaboration between Serbian and Italian COST Action 
members. Parts of the research were also reported in doi: 10.1016/j.aeue.2017.05.036. 
Next path under investigation is to develop specific forms of transfer functions related to various 
distributed-parameter systems, with or without fractional spatio-temporal dynamics. Initial results are 
reported in doi: 10.1109/ECCTD.2017.8093252, doi: 10.1007/s11071-016-3322-z. An important issue 
regarding stability of the developed fractional models, which also addresses issues of admissible values 
of parameters, is presented in doi: 10.1016/j.ifacol.2017.08.2091 and doi: 10.1049/iet-cta.2018.6350. 
Finally, another technique has been developed where fractional models can be derived for time-varying 
systems based on frequency response functions obtained at the beginning and at the end of the 
transformation. This technique has been used to explain the variation in dynamic response of adhesives 
as they undergo phase transition during the curing process. For further information see doi: 
10.1016/j.apm.2019.08.021. 

Development and implementation of a general framework of adaptive identification of fractional and non-
rational systems (WG1, D6) 

A general framework for adaptive identification of fractional and non-rational systems in general has 
been developed. The research has targeted algorithms that are capable of identifying unknown parameters 
in transfer functions of arbitrary form, including rational, fractional, transfer functions, transfer functions 
with “fractional delay”, and other forms of transfer functions which are derived from partial differential 
equations describing distributed parameter systems. The proposed algorithm is gradient based, and novel 
convergence conditions are derived generalizing well known results regarding input richness. Relevant 
studies and approaches have been reported in doi.org/10.1016/j.aeue.2017.04.008, 
10.1109/TAC.2019.2893973. 
For practical performance of controller the design methods strongly depend on the relevancy of identified 
models. Therefore, the mathematical models should express meaningful dynamics of real-world systems. 
Two fundamental numerical solution methods of fractional calculus in identification and simulation 
problems of One Non-Integer Order Plus Time Delay with one pole (NOPTD-I) transfer function models 
were discussed and utilized. The identification process is carried out by estimating parameters of a 
NOPTD-I type transfer function template according to the experimental step response data. The reached 
results were conducted within the collaboration between Estonia (University of Tallinn) and Turkey 
(Inonu University) groups and the results were reported in  doi: 10.1142/S1793962319410113. Part of 
this Deliverable is also the Matlab code, which is shared for the use of researchers in the Mathworks 
(https://www.mathworks.com/matlabcentral/fileexchange/88813-fractional-order-time-delay-plant-
identification). 

Approximation of derivatives and integrals of fractional orders by new numerical and analytical methods; 
Fractionized models (WG1, D13) 

Numerous novel approaches for the numerical handling of fractional operators have been proposed 
recently by research groups within and outside of the COST action. In a detailed discussion of some of 
these methods doi: 10.3390/math8030324, a significant number of problems have been identified and 
improvements or alternatives that avoid these issues have been suggested. Furthermore, a new class of 
numerical methods has been proposed. These novel methods differ in their structure and in the 
interpretation of their respective parameters greatly from the traditional approaches. Therefore a 
comparison of the performance is difficult and appropriate concepts for such a sensible comparison need 
to be designed. This work is currently ongoing. We expect to have publishable results within the two 
years after the end of the action. The outcome will then be published in suitable international peer 
reviewed journals. Moreover, a first guide to the evaluation of fractional integrals and derivatives 

https://www.mathworks.com/matlabcentral/fileexchange/88813-fractional-order-time-delay-plant-identification
https://www.mathworks.com/matlabcentral/fileexchange/88813-fractional-order-time-delay-plant-identification
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(according to different definitions) of the main elementary functions, has been provided, doi: 
10.3390/math7050407, thus filling a gap in the scientific literature on the subject. 
Regarding the fractionized models, their efficient applications in tumor-growth, tumor-immune 
surveillance and epidemiology were studied, see e.g. doi: 10.1063/1.5096159, doi: 
10.11121/ijocta.01.2020.00862, or doi: 10.1016/j.chaos.2021.110654. 

Development of methods for PID controllers’ synthesis, Matlab toolboxes and discretization algorithms 
(WG1, D17) 

Numerical methods for the solution of fractional differential equations, in particular for multi-order 
systems, i.e. systems in which each differential equation has a different order,  and multi-term equations 
(when in the same equation there are several fractional derivatives) has been discussed, doi: 
10.3390/math6020016 and  doi: 10.3390/math8030324. As a result of this investigation a set of robust 
Matlab codes have been released. These are general purposes codes, with a similar usage to those of other 
built-in Matlab codes for classical ordinary differential equations, and their use is therefore very simple 
and possible also by users with no particular experience in numerical analysis. 
Other results contributing to this deliverable deal with the investigation of multi-loop control structures. 
The multi-loop control structures can enhance inherent disturbance rejection performance of classical 
closed loop control loops. While the classical closed loop PID control loop (inner loop) deals with 
stability and set-point control, the additional model reference control loop of MIT rule (outer loop) can 
improve the disturbance rejection control performance without degrading the optimal set-point control 
performance. Such adaptive disturbance rejection approach, which is not influencing the set-point control 
performance, can be achieved by selecting reference models as transfer function of the PID control loops 
with ignorable time delay. This structure may deal with the design tradeoff between set-point and 
disturbance rejection performances for low time-delay systems. This approach is researched in a fruitful 
collaboration with Dr. Aleksei Tepljakov and Prof. Eduard Petlenkov from Tallinn University. Several 
variants of multi-loop Model Reference (Ml-MR) PID control designs (Ml-MR PID-MIT control) to 
improve disturbance rejection control were discussed  doi: 10.3390/a13020038. Disturbance rejection 
control performance of multi-loop Model Reference FOPID control structures was reported in doi: 
10.1142/S0218126618501761 and doi: 10.3390/a13080201. The Matlab code delivery was shared in the 
Mathworks (https://www.mathworks.com/matlabcentral/fileexchange/88823-multi-loop-model-
reference-pid-control). 
In recent papers, see doi: 10.1016/j.ejcon.2020.06.005 and doi: 10.23919/ECC.2019.8796163, classes of 
fractional-order PID controllers and distributed-order PID controllers were proposed and successfully 
applied to permanent magnet synchronous motors used in industry. The design of the controllers’ 
parameters was made by a generalized particle swarm optimization, which was applied to the controllers 
in two nested loops of the electrical drive. Optimization was based on a cost function considering both 
performance and robustness indexes, i.e. the maximum sensitivity, maximum noise sensitivity, maximum 
resonant peak, while guaranteeing closed-loop stability. Results show that the proposed controllers can 
successfully replace usual PI/PID controllers both in reference tracking and disturbance rejection. 
Moreover, other results regarded fractional-order control of robotic manipulators. In particular, in doi: 
10.1109/SMC.2019.8914031 a general procedure was introduced to design fractional-order controllers 
for independent-joint control of DC motors actuating robot joints, for a 5DOF robotic manipulator. Both 
position and speed are controlled by employing feedback and feedforward actions. Design formulas 
provide the controllers’ parameters as a function of frequency-domain specifications. A detailed 
simulation model allows to verify that better performance is achieved with respect to integer-order 
controllers, even in presence of disturbances and plant nonlinearities. 
A paper doi: 10.1016/j.ifacol.2020.12.2050, investigated the use of a fractional-order lag network or a 
fractional-order PI controller for the motion control of three revolute joints of a manipulator. The 
introduced fractional compensators are designed by using the symmetrical optimum principle and by 
parameters optimization or by frequency-domain loop shaping, respectively. In both cases, the same 

https://www.mathworks.com/matlabcentral/fileexchange/88823-multi-loop-model-reference-pid-control
https://www.mathworks.com/matlabcentral/fileexchange/88823-multi-loop-model-reference-pid-control
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performance and robustness specifications were considered. Simulation results and frequency response 
show effectiveness and robustness of the approach. 
Finally, another activity (see doi: 10.2298/TAM201203016L) supporting this deliverable addressed the 
problem of finite-time stability for uncertain neutral nonhomogeneous fractional-order systems with 
time-varying delays. A robust finite-time stability test procedure based on the extended form of the 
generalized Grönwall inequality was suggested. The sufficient condition for robust finite-time stability 
of such systems was established. Numerical examples show the effectiveness of the procedure. 

Presentation of optimized low-order approximations of fractional Laplacian operator featuring lower 
circuit complexity (WG2, D2) 

The results presented in doi: 10.1016/j.ifacol.2017.08.1422 and doi: 10.1109/ECCTD.2017.8093324 
provide efficient techniques to obtain accurate and low-order approximations of fractional operators and 
compensators that are useful for control and other applications. 
Partially also delivered by presenting the comprehensive analysis of the approximation of low-pass 
magnitude response. These results were presented in doi: 10.1016/j.aeue.2017.04.031. The further 
analysis of specific transfer function types continues, see e.g. doi: 10.5755/j01.eie.24.2.20634A curve 
fitting based technique is introduced for approximating the behavior of fractional-order systems, and it is 
applied in the case of filters, controllers, and driving point impedances. The magnitude and phase 
frequency responses of the transfer function are first extracted and approximated through curve fitting-
based techniques. A rational integer-order function is then obtained and realized using appropriately 
configured passive and/or active topologies. Comparison between the conventional method and the 
proposed method reveals that the achieved benefit is the significant reduction of the passive and/or active 
components count. The concept as well as the related applications have been published e.g. in doi:  
10.1109/NILES50944.2020.9257936, doi: 10.1007/s00034-020-01514-7, doi: 
https://doi.org/10.3390/fractalfract4040054, or doi: 10.1016/j.aeue.2020.153537. 

Presentation of tools for analysis and synthesis of the fractional-order function blocks (WG2, D7) 
The FOMCON toolbox for MATLAB®, initially developed by Aleksei Teplakov, the MC member for 
Estonia, was further improved. The FOMCON toolbox for MATLAB® is a fractional-order calculus 
based toolbox for system modeling and control design. For more details about the Matlab Toolbox you 
may check the MathWorks® File Exchange or the FOMCON homepage. 
During the COST Action period the FOMCONpy was introduced and is a new fractional-order modelling 
and control toolbox for Python. It is an extension of the existing FOMCON toolbox for MATLAB, but 
this time aiming at Python users and the Internet of Things (IoT) community. Just like the original 
toolbox, it offers a set of tools for researchers in the field of fractional-order control. Similarly as 
FOMCON, also FOMCONpy is available for the broad research 
community: https://github.com/outstandn/fomcon. 

Increased approximation accuracy of fractional Laplacian operator for analogue circuit design, discrete 
rational approximations (WG2, D14) 

One of the contributions to this deliverable is in the comprehensive analysis of the Oustaloup 
approximation and defining the equations to determine the initial parameters of this approximation 
technique to obtain a response that satisfies the designers’ requirements of approximation error in 
magnitude and/or phase in a specific frequency range for the minimal possible order N of the 
approximation as presented in doi 10.1109/ICUMT.2018.8631227. 
Other results relevant to this deliverable were published in doi: 10.1109/CoDIT.2019.8820521. A link 
was established between the Lagrange’s continued fraction expansion (CFE) and two other CFEs 
introduced for approximating the fractional Laplacian operator sν, with 0 < ν < 1, and their discrete 
realizations. On their turn, the two novel CFEs are linked with each other. Zeros and poles of these new 
approximations alternate on the negative real half-axis of the s-plane (for analog realizations) and on the 
real segment inside the unit circle of the z-plane (for discrete realizations). Discrete approximations the 
fractional operator have poles and zeros enjoying a nice symmetrical distribution on the z-plane, namely 

https://de.mathworks.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab
https://fomcon.net/
https://github.com/outstandn/fomcon
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with respect to the origin of the z-plane. These properties are obtained for any order of realization (i.e. 
degree of numerator and denominator of the approximation, or number of zeros and poles). 
An indirect approach in two steps was proposed in doi: 10.1109/SMC.2019.8914260 to obtain discrete 
rational transfer functions (TFs) for implementing the fractional-order Tustin operator (FTO). The 
polynomial coefficients of the rational discrete TF approximation of the FTO are given by closed-form 
expressions. In this way, an easy computation is possible, which is a remarkable new feature. The 
proposed coefficients expressions are the basis for proving the zero-pole interlacing of the discrete FTO. 
The interlaced zero-pole pattern shows a symmetrical configuration on the z-plane. 

Presentation of new fractional-order elements based on the IMPC, graphene and RC-EDP design 
approach (WG2, D16) 

The hardware design of fractional-order elements based on the Resistive-Capacitive Elements with 
Distributed Parameters (RC-EDP) was performed by implementing thick-film technology based 
fractional-order elements. A software design tool was developed by prof. Ushakov and presented at doi: 
10.1109/ECCTD.2017.8093314 and later further described in detail doi: 10.1016/j.jare.2020.06.021. 
 The limitations of assumed thick-film technology process were investigated and layout optimization 
recommendations described. Following these optimization steps the solid-state capacitive FOEs were 
produced and are available as utility samples; capFOE_045 and capFOE_05. 
 Next to the investigation of solid-state FOE design based on the RC-EDP theory, with respect to the 
realization of analogue hardware devices, with intrinsic, fractional-order structure, another two different 
design technologies have been analyzed.  
The first approach is based on the use of carbon-based structures dispersed inside a polymeric matrix. 
The article doi: 10.1109/TED.2020.2965432, analyzes the material characterization of the nanocomposite 
employed in the fabrication of a solid-state fractional capacitor. The studies on the nanocomposite 
characterization include the Fourier-transform infrared (FTIR) spectroscopy spectra, the Raman spectra, 
the X-ray powder diffraction (XRD) spectrum, the transmission electron microscopy (TEM), and the 
scanning electron microscopy (SEM) images, while in doi: 10.1016/j.mejo.2018.10.008, the possibility 
of realizing fractional capacitors by using carbon black nanostructured dielectrics was investigated. 
Capacitors have been realized by varying the percentage of distributed carbon black. The frequency 
analysis of the capacitors has been, therefore, performed. The Bode diagrams outline that this class of 
devices shows a non integer order behavior. Moreover, a dependance between the curing temperature and 
the fractional order has been shown. 
In the next approach, doi: 10.1016/j.aeue.2019.152927, the team proposes and demonstrates the 
possibility of using Bacterial Cellulose (BC), a bio-derived polymer, for the realization of fractional-
order electronic devices. BC, unlike plant-derived cellulose, is produced by some genera of bacteria, if a 
suitable culture is maintained.  Compared to plant-derived cellulose, BC can be obtained with a green 
and low-energy production process, which does not produce pollutants nor carbon composites. BC is 
used as the bulk in a capacitor-like structure. The device impedance has been investigated and 
experimental evidence of its fractional nature is given. A model is proposed and a possible explanation 
of the involved phenomena is provided. 

Development of integrators and differentiators, initial implementation of digital fractional order blocks 
(WG3, D3) 

Efficient circuit solutions to design fractional-order integrator and differentiators using opams, CCIIs, 
CFOAs and OTAs were published e.g. in doi: 10.1109/TSP.2017.8076081. Further approximations of 
fractional-order differentiator and integrator operators are proposed in doi: 10.1002/cta.2598. These 
approximations target the realization of these operators using standard active filter transfer functions. 
Hence, circuit implementations in integrated circuit form or in discrete component form are significantly 
facilitated. The concept is based on the employment of the partial fraction expansion tool and, as a result, 
the fractional-order transfer function is decomposed in a sum of a constant term and 1st or 2nd basic filter 
functions (i.e. lowpass, highpass, bandpass etc). Comparison with the literature shows that a significant 

https://www.vutbr.cz/www_base/vav_priloha.php?vavID=166297&prilohaID=199444
https://www.vutbr.cz/www_base/vav_priloha.php?vavID=166296&prilohaID=199442
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reduction of the required circuit complexity is achieved. Applications of this concept have been published 
in a number of papers: doi: 10.1016/j.mejo.2018.11.013, 
doi: 10.1016/j.mejo.2019.05.002, doi: 10.1007/s00034-019-01308-6,  
doi: 10.3390/technologies7040085, or doi: 10.3390/electronics9010063. 
Controllable fractional-order integrator, integrational-derivative two-port and practical aspects of their 
mutual interconnection has also been investigated. The minimal configuration blocks of fractional-order 
immitances with only one active element and fractional-order integrator in current mode were designed. 
The reached results and proposed solutions were published in doi: 10.1109/TSP.2019.8768814, doi: 
10.3390/app10010054, doi: 10.1109/TSP49548.2020.9163553 and doi: 
10.1109/ICECS49266.2020.9294923. 

Development of fractional-order analogue and digital filter topologies using basic building blocks (WG3, 
D9) 

Analogue or digitally controlled analogue fractional-order filters providing the low-, band- and high-pass 
frequency response. Some of the basic results reached by Action members can be found e.g. in doi: 
10.1016/j.aeue.2017.04.031, doi: 10.5755/j01.eie.24.2.20634, doi: 10.1109/TSP.2018.8441421, or doi: 
10.1515/jee-2018-0001. During the design, the attention was paid to proposing circuit solutions featuring 
also optimized circuit complexity. This was partially reached by designing and experimental verification 
and optimization of RC structures with distributed parameters and by designing suitable values of 
fractional-order series in order to cover ranges required by circuit applications. Comprehensive research 
on the design of functional fractional-order blocks, their verification and optimization based on the target 
features was made. Moreover, analysis of fractional-order transfer functions of various filter types was 
delivered. Several reconfigurable and reconnection-less reconfigurable filtering structures have been also 
designed. Finally, we have studied building blocks suitable for applications in fractional-order domain. 
Results relevant to this deliverable and reached by COST Action members can be found in: doi: 
10.5755/j01.eie.25.3.23673, doi: 10.1016/j.jare.2020.06.022, doi: 10.1109/TSP.2019.8769089, doi: 
10.1109/TSP49548.2020.9163400. 
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Optimal dynamic control – methods for solution and numerical computation of optimal dynamic control 
(WG3, D11) 

The activities within this deliverable mainly base on further development of the FOMCON toolbox that 
was originally developed by Aleksei Teplakov:   
https://de.mathworks.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab. During the 
COST Action period the FOMCONpy was introduced and is a new fractional-order modelling and control 
toolbox for Python and is also available for the community for further usage and design of fractional 
controllers: https://github.com/outstandn/fomcon. 

Application of FO linear and non-linear blocks in sensors, actuators and control systems (WG3, D18) 
The activities on this deliverable were initiated by utilizing fractional-order function blocks in the PID 
control: see e.g. doi: 10.1142/S0218126618501761, doi: 10.1016/j.ifacol.2018.06.151, or do: 
10.1109/TSP.2018.8441247. 
Fractional-order PID controllers and fractional controllers with various distributed orders were further 
designed, realized, and applied to control electrical drives and robots, in several applications – see doi: 
10.1016/j.ejcon.2020.06.005, doi: 10.2298/TAM201203016L, doi: 10.1109/JAS.2017.7510325, doi: 
10.1007/978-3-030-17344-9_11, doi: 10.1109/SMC.2019.8914031, doi: 10.1016/j.ifacol.2018.06.154, 
whereas detail description of the PID controllers and their purpose and application is part of Deliverable 
D17. 

Development of preliminary models for automotive injection systems and of physical and mathematical 
knowledge on models of Havriliak (WG4, D4) 

Models describing individual parts that affect the injection process in advanced automotive natural gas 
engines were discussed in doi: 10.1016/j.ifacol.2017.08.2084. Gas engines were proposed to reduce 
pollution determined by combustion of Diesel or gasoline fuels, but their performance strongly depends 
on the metering of the air/fuel ratio, which is achieved by controlling the gas injection timing and the gas 
pressure in the common rail volume. The activities aimed to define an accurate model that 
would  represent the gas pressure dynamics in the injection system. It was identified that a fractional-
order model describes the gas flow into the common rail better than ARX integer-order models of high 
order. Identification was made in the frequency domain by minimizing a difference criterion between the 
model output and real data. 
Moreover, the report “Fractional-Order Modeling of Fuel Propagation in Electro-injectors Pipes” by F. 
Saponaro, G. Maione, P. Lino, R. Garrappa, (Workshop on current progress in fractional-order systems 
and their utilization – Cost Action 15225 Annual Workshop, San Sebastian, Spain, 5-6 October 2017), 
showed results in modeling strategic components of common rail Diesel compression-ignition engines, 
namely the electro-injectors used to to let the proper amount and rate of fuel enter the combustion 
chamber. Preliminary fractional-order models of the fuel flow inside the electro-injectors were developed 
to better describe certain fluid-dynamic processes associated with the high-pressure flow according to 
wave propagation. 
Preliminary mathematical developments and properties regarding Havriliak-Negami type of time-domain 
or frequency-domain models were obtained by putting together the best results from the following 
previous achievements doi: 10.1007/978-3-319-45474-0_38 and doi: 10.1515/fca-2016-0060 reached by 
the COST Action participants. Some advancements were proposed in the current output doi: 10.1515/fca-
2020-0002. In details, numerical methods are now available to give an approximate but accurate solution 
to differential equations in which the Prabhakar derivative is used to better describe anomalous relaxation 
in Havriliak-Negami models of dielectric materials or biological tissues. Moreover, the time-domain 
relaxation and response functions of the most common materials that show anomalous relaxation are now 
well known and described. 

  

https://de.mathworks.com/matlabcentral/fileexchange/66323-fomcon-toolbox-for-matlab
https://github.com/outstandn/fomcon
https://doi.org/10.1007/978-3-319-45474-0_38
https://doi.org/10.1515/fca-2016-0060
https://doi.org/10.1515/fca-2020-0002
https://doi.org/10.1515/fca-2020-0002
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Detailed models and virtual prototypes; low-order models for FO controllers, development of simulation 
tools for systems of Havriliak-Negami type (WG4, D8) 

The results shown in the previous publications doi: 10.1016/j.ifacol.2016.08.071, doi: 
10.1109/CDC.2015.7403160, doi: 10.3182/20150218-3-AU-30250//978-3-902823-71-70075, doi: 
10.3182/20140824-6-ZA-1003.00889 are based on simulation models developed in the Matlab/Simulink 
environment or on virtual prototypes built by the AMESim software package. The mentioned tools also 
allow an easy and fast prototyping of the control systems on the basis of a model-based approach that 
guarantees accuracy and effectiveness of the results. Namely, the implemented simulation models allow 
an accurate representation of the complex, nonlinear, time-varying dynamical processes that occur in the 
considered common rail injection systems and characterize their operation in different working points. In 
this sense, the models can be considered very close to the hardware and real systems they represent. More 
specifically, the adoption of fractional order models for CNG injection systems provides a compact 
mathematical representation of the only most significant characteristics of the injection process. In fact, 
unlike the classical high integer-order ARX models, a simple model structure can be obtained in the form 
of a fractional-order transfer function by neglecting the secondary effects and  capturing only the relevant 
features for control design, providing a reliable prediction of the injection pressure at the same time. The 
identification procedure is based on a frequency-domain method and on classical and efficient convex 
techniques applied to experimental data. 
In doi: 10.3390/fractalfract4030037, a serial structure of cascaded, shifted, fractional-order, lead 
compensators was proposed as a new type of fractional-order controller. Two stages are connected in 
series and introduce their respective phase leads in shifted adjacent frequency ranges. The obtained 
compensator shows a nearly flat phase diagram in a large frequency range and can be easily realized by 
low-order rational transfer functions, each stage being a second-order transfer function with limited 
sensitivity of coefficients to parametric variations. However, the number of stages and their free 
parameters can be changed such that these new controllers can be flexible and suitable for solving difficult 
control problems. On this basis, a method is introduced to design a robust controller for a class of 
benchmark plants that are difficult to compensate due to monotonically increasing lags. The main design 
strategy consists in compensating the rapidly and monotonically increasing phase lag by the lead 
introduced by the compensator in the same frequency range. Desired set-point response, stability 
robustness to gain and parameter variations, and compensation of dead-time to satisfy strict specifications 
can be achieved much better than by integer-order controllers. 
To simulate Havriliak-Negami models in the time domain, efficient numerical schemes were developed. 
Firstly, a convolution quadrature rule was derived on the basis of the Laplace transform representation of 
the response function. The method allows to discretize fractional Havriliak-Negami models in the time 
domain and then obtain a numerical approximation useful to simulate the time-domain response of these 
models. Secondly, a Prabhakar function was employed to describe anomalous relaxation properties of 
dielectric materials with Havriliak-Negami type of behaviour, doi: 10.1007/s11071-020-05897-9, doi: 
10.1515/fca-2020-0002. 

Advanced FO control algorithms and realization techniques for automotive applications; model of pain 
pathways and corresponding software (WG4, D12) 

It was shown that some advanced fractional-order control techniques can be applied to automotive 
engines using the common rail injection system technology and compressed natural gas, which gives a 
solution to reduce emissions of polluting gases and particulate matter. In this case, the injection process 
is strongly non-linear, time-variant and highly coupled, so suitable control systems must be designed to 
guarantee the desired performance. The main controlled variable affecting emissions and consumption of 
the engines is the common rail pressure in the injection system. 
An approach was made available to synthesize and realize fractional order controllers. Synthesis of the 
controller is based on a loop-shaping technique, which is applied on the open-loop transfer function to 
achieve frequency-domain performance and robustness specifications. The technique pursues an optimal 
feedback system in a specified bandwidth and takes advantage of the fractional integrator to achieve 
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enhanced robustness. Moreover, the design approach is reinforced by the D-decomposition methodology 
that guarantees robust stability of the closed-loop system. Finally, the design formulas are specified by 
closed-form expressions. As regards the realization of the synthesized controllers, accuracy and 
simplicity are both considered, to allow an efficient and easy implementation as required by industry. 
Last but not least, the realization formulas guarantee stability and minimum-phase properties of the 
controllers. 
The performance indexes, the robustness (sensitivity to parametric changes) and disturbance rejection 
capability are tested by simulation of virtual prototypes that are based on very accurate non-linear models 
of the considered injection systems. Results indicate that fractional-order controllers allow a higher 
accuracy in metering the injected fuel and better promptness in setting the rail pressure to the desired 
reference values. 
The variation between different working points of the injection system (in terms of the reference rail 
pressure) is compensated by a model-based fractional-order gain scheduling control strategy, which 
allows switching from one controller to another each time the working point associated to the rail pressure 
changes. In case of small variations, only one switch is necessary; if large variations occur, then more 
controllers are considered such that variations of the injection timings and the rail pressure are limited. 
In this way, nonlinearity effects, oscillations and instability problems in the rail pressure are prevented. 
New results were obtained for the fractional-order control of the common rail pressure affecting the 
injection process, to increase the performance of an advanced common rail compressed natural gas 
engine. The reached results contributing to this deliverable were discussed e.g. in doi: 
10.1016/j.ifacol.2017.08.2084 and as chapter are part of the Handbook of Fractional Calculus with 
Applications, Vol. 6, Applications in Control, 2019, Ed. I. Petráš (chapter on Fractional-Order Controllers 
for Mechatronics and Automotive Applications by P. Lino, G. Maione, pp. 267-292). Additionally, it is 
expected to publish a manuscript including the latest results in the performance increasement of an 
advanced common rail compressed natural gas engine in an international peer-reviewed journal relevant 
to the control engineering community. 

Modelling and control of injection systems; Schemes for analyzing propagation of electro-magnetic fields 
in biological tissues; Report on correlation analysis and corresponding software (WG4, D19) 

The contribution to accurate modelling of the electro-injectors that are used in common rail injection 
systems of Diesel engines was made and presented e.g. in doi: 10.1016/j.ifacol.2016.08.071. The model 
takes into account the fuel properties, the nonlinear dynamics of the fuel flow, the electro-hydraulic 
elements and the mechanical components subject to displacement and deformation. But it also considers 
fractional-order representation of the high-pressure fuel propagation inside a peculiar annular pipe of the 
electro-injectors, which is given by fractional-order differential equations. To this aim, partial differential 
equations with fractional-order time derivatives are obtained by starting from the conventional integer-
order continuity and momentum equations. It is demonstrated that conservation laws are not violated, 
thanks to a physical interpretation since the injector is not a closed system hence it loses energy (fractional 
mass conservation) and on the usage of fractional viscosity (for a fractional momentum balance). The 
absence of analytical solutions in closed form pushes us to adopt a numerical procedure to solve and 
simulate the system of time–fractional PDEs by time and space discretization. The specific modelling 
and control results related to this new approach were presented in a paper submitted to an international 
peer-reviewed journal. The new model shows a better prediction capability than a rigid body model, 
which is based on assuming that some relevant coupled mechanical elements behave as rigid bodies, and 
a nominal model, which uses nominal values of the parameters that are here fixed by conventional 
expressions but that can be subject to optimization. Model-based simulation shows the improvement in 
prediction by the help of real data. 
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Contribution of each working group to the proceedings of the Year 1 Workshop co-located with the 
Action meeting (all WGs, D5) 

The Annual Workshop 2017 was organized in San Sebastian by the Spain representatives of the Action, 
Dr Karmele Lopez de Ipina and Dr. Pilar Ma Calvo, at University of the Basque Country. Following the 
tasks and expected deliverables described within the individual Working Groups, 19 speakers from the 
member countries presented the progress in the description and utilization of fractional-order systems 
and function blocks. Next to that also representatives of the 3 local companies – Technalia (by Hector 
Herrero), Stago (by Pablo Martinez Santoja) and OTRI (by Gorka Artola), gave a speech on the possible 
utilization of fractional-order approach in controlling their designs. 

Contribution of each working group to the proceedings of the Year 2 Workshop co-located with the 
Action meeting (all WGs, D10) 

The Annual Workshop 2018 was organized in Bialystok by the Polish representative of the Action, Dr 
Dorota Mozyrska, at University of Bialystok. Following the tasks and expected deliverables described 
within the individual Work Groups, 16 speakers from the member countries presented the progress in 
analysis and design of optimized fractional-order function blocks and system control. 

Contribution of each working group to the proceedings of the Year 3 Workshop co-located with the 
Action meeting (all WGs, D15) 

The Annual Workshop 2019 was organized in Ghent by the Belgium representative of the Action, Dr 
Dana Copot, at Ghent University. Following the tasks and expected deliverables described within the 
individual Working Groups, 14 speakers from the member countries presented the progress in analysis 
and design of optimized fractional-order function blocks and system control and discussed their results 
and future plans. The topics covered the areas from mathematical description to practical utilization in 
analysis, modelling, classification and/or control of different applications. Newly, the possible usage of 
fractional approach in cryptography was presented by Fatih Ozkaynak from University of Firat, Turkey. 
The fractional chaotic systems provide higher entropy and are suitable for more robust cryptography 
protocols. For more information, please visit Annual Workshop 2019. 

Contribution of each working group to the proceedings of the Year 4 Workshop co-located with the 
Action meeting (all WGs, D20) 

The final Annual Workshop originally planned to take place in year 2020 was postponed to March 2021 
as based on our request the COST Action period was extended by 6 months due to the COVID-19 
pandemic situation. Even if originally planned to be organized as face-2-face in Brno Czech Republic, it 
was necessary to organize the final Annual Workshop online using the MS Teams platform due to lasting 
COVID-19 situation. With the end of the COST Action, there were over 50 participants, whereas only 8 
active speakers gave their presentations. Even if the number of active speakers was lower competed to 
previous Annual Workshop, within each presentation there was a fruitful discussion about the recent 
results and mainly their new research objectives and goals.  

Finalization of the book summarizing Action activities and scientific results achieved during its four and 
half years span (all WGs, D21) 

We made it! The last deliverable was reached by finalizing the Action Book that you are just reading. 
Thank you very much for being interested in activities and hopefully you find inspiration in the results 
we reached or even in submitting your own proposal for a new COST Action. 
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Organization of the Action 

The management structure of the Action had basically three levels: 

(i) Core Group 
• Action Chair & Grant Holder Scientific Representative: 

o Jaroslav Koton (Brno University of Technology, Czech Republic) 
• Action Vice Chair: 

o Dorota Mozyrska (Bialystok University of Technology, Poland) 
• Science Communication/Dissemination Coordinators: 

o Harry Esmonde (Dublin City University, Ireland) 
o Norbert Herencsar (Brno University of Technology, Czech Republic) 

• STSM Coorinator: 
o Biljana Jolevska-Tuneska (Ss Cyril and Methodius University in Skopje, North Macedonia) 

• Work Group 1 Leaders: 
o Igor Podlubny (Technical University of Kosice, Slovakia); Oct. 2 2016 –  Sept. 19, 2019 
o Sanja Konjik (University of Novi Sad, Serbia); Sept. 19 2019 – Apr. 2, 2021 

• Work Group 2 Leader: 
o Riccardo Caponetto (University of Catania, Italy) 

• Work Group 3 Leader: 
o Costas Psychalinos (University of Patras, Greece) 

• Work Group 4 Leader: 
o Jerzy Baranowski (AGH University of Science and Technology, Poland) 

(ii) Management Committee Members, Substitutes and Observers (see Action Parties and 
Representatives), 

(iii) all receiving strong support from COST Association office: 
• Ralph Stübner: Science Officer, 
• Milena Stoyanova: Administrative Officer. 

Work Groups 
The activities of COST Action and their participants were divided into four Work Groups (WGs), the first 
dealing primarily mathematical issues as a base for all following Work Groups, the last dealing scenarios of 
practical utilization of fractional approach: 

• WG1 - Fractional calculus and mathematical models: 
improving existing and developing new methods for solving non-integer differential equations; 
providing application oriented view on the theory of fractional equations to model the behaviour of 
various function circuits, and control systems; describing the processes investigated within the 
following WGs. 

• WG2 - Fractional-order systems’ synthesis and analysis 
focusing on overcoming the lack of reliable solid-state elements featuring fractional-order immitance 
suitable for hardware realizations of analogue function blocks; presenting tools suited for fractional-
order function blocks symbolic and semi-symbolic analysis and description. 

• WG3 - Design of analogue and digital fractional-order function blocks 
designing reliable fractional-order function blocks suited for signal processing and control, synthesized 
both in analogue and digital form. 

• WG4 - Utilization of fractional-order systems in engineering and biomedical research areas 
utilizing the fractional order systems in applications rising from engineering and biomedical areas. 

To get a better insight of contribution to each WG, check the Part II of this Action Book, where short papers 
are present with more links for interested readers. 
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Action Parties and Representatives 

During the period of the COST Action CA15225, it merged people from 25 COST Member Countries – out of 
14 were so called Inclusiveness Target Countries (ITCs), and gave the opportunity to interact with research 
groups from 8 institutions of COST Near Neighbour Countries or COST International Partner Countries. 

Each Country was represented by active people accepting the role of being MC Member, MC Substitute or MC 
Observer. 

 

COST Member Countries 

 

COST NNCs and IPCs 



21 

 

COST Member Countries: 

• Belgium 
o Cosmin Copot (Ghent University) 
o Dana Copot (Ghent University) 
o Emmauel Hanert (Université catholique de Louvain) 

• Bosnia and Herzegovina (ITC) 
o Fatih Destović (University of Sarajevo) 
o Tarik Uzunovic (University of Sarajevo) 

• Bulgaria (ITC) 
o Virgina Kiryakova (Bulgarian Academy of Sceinces) 

• Croatia (ITC) 
o Dražen Jurišić (University of Zagreb) 
o Andrej Novak (University of Zagreb) 

• Czech Republic (ITC) 
o Norbert Herencsar (Brno University of Technology) 
o Jan Jerabek (Brno University of Technology) 
o David Kubanek (Brno University of Technology) 

• Estonia (ITC) 
o Eduard Petlenkov (Tallinn University of Technology) 
o Aleksei Teplakov (Tallinn University of Technology) 

• France 
o Catharina Boneet (Inria Saclay Île-De-France) 

• Germany 
o Kai Diethelm (University of Applied Sciences) 
o Juergen Kurths (Potsdam Institute for Climate Impact Research) 

• Greece 
o Costas Psychalinos (University of Patras) 
o Georgia Tsirimokou (University of Patras) 
o Georce Souliotis (University of Peloponnese) 
o Spyridon Vlassis (University of Patras) 

• Ireland 
o Harry Esmonde (Dublin City University) 

• Israel 
o Juri Belikov (Israel Institute of Technology) 
o Yossi Keller (Bar Ilan University) 

• Italy 
o Riccardo Caponetto (University of Catania) 
o Roberto Garrappa (Università degli Studi di Bari) 
o Guido Maione (Politecnico di Bari) 
o Paolo Lino (Politecnico di Bari) 
o Renato Spigler (Università telematica internazionale Uninettuno) 

• Lithuania (ITC) 
o Darius Andriukaitis (Kaunas University of Technology) 
o Grazina Korvel (Vilnius University) 
o Gintautas Tamulevičius (Vilnius University) 
o Algimantas Valinevičius (Kaunas University of Technology) 

• Montenegro (ITC) 
o Zana Kovijanic Vukicevic (University of Montenegro) 
o Darko Mitrović (University of Montenegro) 

https://www.cost.eu/about/members/belgium/
https://www.cost.eu/about/members/bosnia-and-herzegovina-4/
https://www.cost.eu/about/members/bulgaria/
https://www.cost.eu/about/members/croatia/
https://www.cost.eu/about/members/czech-republic/
https://www.cost.eu/about/members/estonia/
https://www.cost.eu/about/members/france/
https://www.cost.eu/about/members/germany/
https://www.cost.eu/about/members/greece/
https://www.cost.eu/about/members/ireland/
https://www.cost.eu/about/members/israel/
https://www.cost.eu/about/members/italy/
https://www.cost.eu/about/members/lithuania/
https://www.cost.eu/about/members/montenegro/
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• Netherlands 
o Hassan S. Hoseinnia (Delft University of Technology) 
o Niranjan Saikumar (Delft University of Technology) 

• North Macedonia (ITC) 
o Tatjana Atanasova-Pachemska (Goce Delcev University) 
o Biljana Jolevska-Tuneska (University in Skopje) 

• Norway 
o Xing Cai (Simula Research Laboratory) 
o Sverre Holm (University of Oslo) 

• Poland (ITC) 
o Jerzy Baranowski (AGH University of Science and Technology) 
o Dorota Mozyrska (Bialystok University of Technology) 

• Portugal (ITC) 
o Pedro Lima (University of Lisbon) 
o Jose Machado (Instituto Superior de Engenharia do Porto) 
o Maria Luisa Morgado (University of Trás-os-Montes and Alto Douro) 
o Magda Rebelo (Universidade Nova de Lisboa) 

• Romania (ITC) 
o Eva-Henrietta Dulf (Technical University of Cluj-Napoca) 
o Eva Kaslik (West University of Timisoara) 
o Cristina Ioana Muresan (Technical University of Cluj-Napoca) 
o Michaela Neamtu (West University of Timisoara) 

• Serbia (ITC) 
o Zoran Jelicic (University of Novi Sad) 
o Sanja Konjik (University of Novi Sad) 
o Milan Rapaić (University of Novi Sad) 
o Dušan Zorica (Academy of Arts and Sciences) 

• Slovakia (ITC) 
o Ivo Petras (Technical University of Kosice) 
o Igor Podlubny (Technical University of Kosice) 
o Tomas Skovranek (Technical University of Kosice) 
o Jan Terpak (Technical University of Kosice) 

• Spain 
o Pilar Ma Calvo (University of the Basque Country) 
o Marcos Faundez-Zanuy (Tecnocampus) 
o Miguel Ángel Ferrer (Universidad de Las Palmas de Gran Canaria) 
o Karmele López de Iniña (University of the Basque Country) 
o Jordi Solé-Casals (University of Catalonia) 
o Blas M. Vinagre (School of Industrial Engineering) 

• Turkey (ITC) 
o Baris Baykant Alagoz (Inonu University) 
o Dumitru Baleanu (Cankaya University) 
o Özlem Defterli (Çankaya Üniversitesi) 
o Nusret Tan (Inonu University) 
o Celaleddin Yeroglu (İskenderun Technical University) 

• United Kingdom 
o Neville Ford (University of Chester) 

  

https://www.cost.eu/about/members/netherlands/
https://www.cost.eu/about/members/north-macedonia/
https://www.cost.eu/about/members/norway/
https://www.cost.eu/about/members/poland/
https://www.cost.eu/about/members/portugal/
https://www.cost.eu/about/members/romania/
https://www.cost.eu/about/members/serbia/
https://www.cost.eu/about/members/slovakia/
https://www.cost.eu/about/members/spain/
https://www.cost.eu/about/members/turkey/
https://www.cost.eu/about/members/united-kingdom/
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COST Near Neighbour Countries 

• Egypt, Nile University 
o Ahmed Radwan 

• Russian Federation, Kalashnikov Izhevsk State Technical University 
o Peter A. Ushakov 

COST International Partner Countries 

• Canada, University of Calgary 
o Brent Maundy 

• India, Indian Institute of Technology Kharagpur 
o Karabi Biswas 

• India, Anand International College of Engineering 
o Praveen Agarwal 

• India, University of Kashmir 
o Farooq Ahmad Khanday 

• United Arab Emirates, University of Sharjah 
o Ahmed S. Elwakil 

• United States, University of Alabama in Tuscalossa 
o Todd J. Freeborn 

  

https://www.nileuniversity.edu.ng/
http://inter.istu.ru/
https://www.ucalgary.ca/
http://www.iitkgp.ac.in/
https://anandice.ac.in/
https://www.kashmiruniversity.net/
https://www.sharjah.ac.ae/
https://www.ua.edu/
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Organized Events and Activities 

A lot did happen once looking at the life-time of COST Action CA15225 during its Grand Periods below. Events 
were organized and other networking tools supported, such as Meetings, Workshops and Training schools. 
Somewhere in between also the Short Term Scientific Missions (STSMs) and ITC Conference Grants took 
place. Check out more by further reading. 

 

Sept 8, 2015
COST Action

proposal submitted

Feb 17, 2016
COST Action

proposal accepted

Oct 3, 2016
1st MC  Kick-off  

Meeting

Nov 23, 2016
2nd MC Meeting

Nov 24-26, 2016
COST/IEEE-CASS Seasonal 

Training School in
Fractional-order Systems

Sept 5-8, 2017
Fractional order 
controllers: from 

theory to application

Feb 8, 2018
CG Meeting

Sept 19, 2018
4th MC Meeting

WG Meeting

Jan 10-11, 2019
CG Meeting
WG Meeting

Jul 22-23, 2019
Dissemination Meeting

Sept 19, 2019
5th MC Meeting

WG Meeting

Feb 7, 2020
CG Meeting

Mar 24, 2021
6th MC  Final 

Meeting

Oct 5, 2017
3rd MC Meeting

Sept 20-21, 2018
Ann Workshop

Jul 22-26, 2019
Computational Methods for 
Fractional-Order Problems

Mar 24, 2021
 Final  Ann Workshop

May 12, 2017
Fractional Calculus 

Day @ TUKE

Jan 29-30, 2018
Study group event

May 10-11, 2018
Workshop in 

fractional calculus

Oct 8-12, 2018
Advantages of the fractional 
models in dealing with real 

world problems
Sept 20, 2019
Ann Workshop

Nov 5, 2019
Workshop on Fractional 

order conform from 
practical point of view

Mar 24, 2021
 Goodbye Party 

Oct 5-6, 2017
Ann Workshop

 

 

Meetings 
Meetings were regularly organized to inform, meet and interact with active participants of the COST Action. 

The Management Committee (MC) Meetings were held to inform MC Members, Substitutes and Observers 
about the progress in reaching the Action Deliverables contributing to Action Objectives and to discuss the past 
and propose future events. In total, six MCs meeting were organized: 

• 1st MC “Kick-off” Meeting – October 3, 2016 Brussels (Belgium) 
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• 2nd MC Meeting – November 23, 2016 Brno (Czech Republic) 
• 3rd MC Meeting – October 5, 2017 San Sebastian (Spain) 
• 4th MC Meeting – September 19, 2018 Bialystok (Poland) 
• 5th MC Meeting – September 19, 2019 Ghent (Belgium) 
• 6th MC “Final” Meeting – March 24, 2021 online 

 
We were many already at the beginning, but still made it to grow during the COST Action 

 

Work Group (WG) Meeting were a very efficient tool to discuss inside Work Groups, share and develop joint 
research ideas, solving the Tasks to contribute and to reach planned Deliverables. The WG Meetings were 
advantageously organized together with other events, mainly with the MC meetings: 

• November 23, 2016 Brno (Czech Republic) 
• September 19, 2018 Bialystok (Poland) 
• January 10-11, 2019 Dublin (Ireland) 
• September 19, 2019 Ghent (Belgium) 

Core Group (CG) Meetings were devoted to discuss administrative issues of the Action. The efficiency of the 
past events organized by the Action were discussed and followed by the pre-approval of the events being 
planned for the upcoming Grant Period.  

• February 8, 2018, Krakow (Poland) 
• January 10, 2019 Dublin (Ireland) 
• February 7, 2020 Athens (Greece) 

In the middle of the COST Action CA15225 life-time, the Dissemination Meeting was organized in a form of 
invited speech at 2nd International Conference on Electronics and Electrical Engineering July 22-23, 2019 
Rome (Italy). Here, the ideas, objectives, activities and reached deliverables of the Action were presented by 
the Action Chair. 

A very special type of Meeting was held at the very end of the COST Action. Unfortunately, due to COVID 
restrictions still lasting at that time, we had an online “Goodbye Party”. As Action Chair I would like to thank 
to all MC Members, MC Substitutes, MC Observers, our Science Officer and Administrative Officer, and all 
others, who made it possible to run this COST Action and contributed to its Events and Tasks, used the 
Networking Tools to follow the Action Objectives and reach its Deliverables. 
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Screenshot of the “Goodbye Party”. 

Workshops 

To provide the possibility of a more intense interaction and start cooperation even between the Work Groups’ 
members, Annual workshops were organized. Also PhD students were invited to share not just their research 
breakthroughs and contributions, but also to announce their calls for expertise and help in different fields, not 
necessarily handled inside their Work Group. 

• Annual Workshop on current progress in fractional-order systems and their utilization; October 
5-6, 2017, San Sebastian (Spain) 
The 1,5-day was organized in San Sebastian by the Spain representatives of the Action, Dr Karmele 
Lopez de Ipina and Dr. Pilar Ma Calvo, at University of the Basque Country. Following the tasks and 
expected deliverables described within the individual Working Groups, 19 speakers from the member 
countries presented the progress in the description and utilization of fractional-order systems and 
function blocks. Next to that also representatives of the 3 local companies – Technalia (by Hector 
Herrero), Stago (by Pablo Martinez Santoja) and OTRI (by Gorka Artola), gave a speech on the possible 
utilization of fractional-order approach in controlling their designs. The book of abstracks can be 
downloaded here. 

• Annual Workshop on current progress in fractional-order systems, their mathematical 
description, modelling and utilization; September 20-21, 2018, Bialystok (Poland) 
The current results and achievements within each Working Group following the Tasks and expected 
Deliverables of the Action were presented and discussed among researchers and other participants that 
were present at the two-day event, whereas the total number of participants was 50. The Book of 
Abstracts can be downloaded here. 

• Annual Workshop; September 20, 2019, Ghent (Belgium) 
During this Workshop, 14 speakers presented and discusses their results and future plans. The topics 
covered the areas from mathematical description to practical utilization in analysis, modelling, 
classification and/or control of different applications. Newly, the possible usage of fractional approach 
in cryptography was presented by Fatih Ozkaynak from University of Firat, Turkey. The fractional 
chaotic systems provide higher entropy and are suitable for more robust cryptography protocols. Dr. 

https://fractional-systems.eu/aw2018_sanseb_abstracts_compressed/
https://fractional-systems.eu/aw_2018_extabs_small/
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Dimiter Prodanov from IMEC research institute, Leuven, Belgium was also invited and contributed 
with topic on Dirac decomposition for the time-fractional diffusion equation, where he discussed the 
reduction of the order of the fractional transport equation using Dirac factorization procedure. The Book 
of Abstracts can be downloaded here. 

• “Final” Annual Workshop, March 24, 2021, online 
The workshop was organized online using MS Teams platform. Although there were only eight active 
speakers; Roberto Garrappa, Aleksei Tepljakov, Baris Baykant Alagoz, Harry Esmonde, Neville Ford, 
Dumitru Baleanu, Jaroslav Koton and Todd Freeborn; the discussion that followed each presentation 
was very active and fruitful. This was mainly due to the fact that not just the latest achievements were 
presented, but more significantly the future plans of speakers in their research activities. These 
discussions proved that even if within this COST Action for the last four (four and half) years we tackled 
the fractional calculus and its possible utilization in various areas, we are still at the beginning.  

Next to Annual Workshops, but keeping the intense interaction format were organized. 

• Fractional Calculus Day @ TUKE, May 12, 2017, Kosice (Slovakia) 
The “Fractional Calculus Day” is One-day workshop in the series of international workshops started in 
2007 at the Utah State University, USA. Since then, we had FC Day @ USU (every two years), FC Day 
@ TUKE (2013, 2014, 2016), FC Day @ IST Lisbon, FC Day @ WUT, FC Day @ UC Merced. This 
year, the workshop took place at Technical University of Kosice, Slovakia under the official name 
International Workshop “Fractional Calculus Day @ TUKE”. 
This workshop provided lectures by distinguished guests Prof. Jacek Leszczynski (AGH Krakow, 
Poland), Prof. Richard Magin (University of Illinois in Chicago, USA), Prof. Blas Vinagre (Universidad 
de Extremadura, Spain), and Dr. Matthew Harker (Montauniversitat Leoben, Austria). Other 
participants will also contribute their talks. Open problem discussions and round-table discussions took 
place. The workshop was supported from the funds and projects of Technical University of Kosice 
without any financial contribution of the COST Action CA15225. 

• Study Group Event, January 29-30, 2018, Tallin (Estonia) 

This 2-day Study Group event focused on the efficient usage of fractional-order approach in system 
control domain and signal processing. The event took the advantage of direct interaction and knowledge 
transfer between academics and industry partners. Based on the problems presented the by the industry 
to the participants from academia, after brainstorming within the groups the first steps towards possible 
solutions for the specified problems were discussed together the industry. 
The LDI Innovation and Antasya Software & Consultancy Inc. companies from Estonia and Turkey did 
participate at the event and provided the issues they were facing. For more information, please visit the 
web. 

• Workshop on Fractional Calculus – WFC 2018, May 10-11, 2018, Skopje (North Macedonia) 
Fractional calculus is a modern and expanding domain of mathematical analysis. Using Fractional 
Calculus in the mathematical models includes more information then offered by the classical integer 
order calculus. Besides an essential mathematical interest, its overall goal is general improvement of 
the physical world models for the purpose of computer simulation, analysis, design and control in 
practical applications. The 2-day event brought together researchers from Bulgaria, Serbia, Macedonia, 
Algeria, and Montenegro, whereas 18 speeches were given to the audience. The book of extended 
abstracts can be downloaded here. 

• Workshop on Fractional order conform from practical point of view, November 5, 2019, Delft 
(Netherlands) 
Frequency domain analysis is a key for industry to understand and design controllers. In this event, the 
frequency domain analysis tools to design fractional order controllers were presented and discussed 
within 15 junior and senior researchers. The main contributions were given by: Dr. Duarte Valerio 
(Universidade de Lisboa), Dr. Niranjan Saikumar (Delft Univeristy of Technology), Dr. Fabrizio Padula 

https://fractional-systems.eu/aw_2019_extabs_small/
https://fractional-systems.eu/events-2/sge-2018/
https://fractional-systems.eu/wp-content/uploads/2018/06/Book-of-abstractsWFC2018_web.pdf
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(Curtin Univeristy), and Dr. Patrick Lanusse (Université de Bordeaux), who within their presentations 
also gave some practical examples, which advantageously implemented fractional order control 
efficiently. The presentations of the speakers may be downloaded here. 

Training Schools 

Training Schools (TSs) is another networking took supported by COST Actions. Compared to Meetings, the 
fact that a TS has the duration of at least 3 days this event makes much broader and deeper interaction possible. 
In it not about “fast” seeing each other as TS really enables to know each other much better not just during the 
lectures but also after them having chats e.g. during dinner. 

The COST Action CA15225 planned to host five Training Schools. Unfortunately, the last TS with the title 
“Qualitative theory of fractional-order systems” that should take place in Budva (Montenegro) October 2020 
was first postponed to February 2021 but had to be cancelled due to COVID situation at that time. Here we give 
at least a short list of the remaining four successful Training Schools. 

• COST/IEEE-CASS Seasonal Training School in Fractional-order Systems, November 24-26, 
2016, Brno (Czech Republic) 
This Training School was organized in cooperation with IEEE Circuits and Systems Society and 
enabled to invite and support Trainers not being MC Observers at that time. The aim of this TS was to 
bring together Bachelor, Masters, Ph.D. students and as well as experienced scientists working in 
various interdisciplinary research areas such as advanced mathematics, circuit theory, material science, 
control, biology, and other up to date topics in fractional-order systems. As Trainers six world-
recognized speakers were giving their lectures: 

o Igor Podlubny (Slovakia): Foundations of Fractional Calculus for Applications 
o Ahmed G. Radwan (Egypt): Approximation and Realization of Fractional-Order Circuits 
o Riccardo Caponetto (Italy): Nano Structured Material as Fractional-Order Element 
o Aleksei Tepljakov (Estonia): Fractional-order PID Control: Tuning and Practical 

Implementation 
o Todd J. Freeborn (USA): Modeling of Biological Tissues’ Properties 
o Ahmed S. Elwakil (UAE): Fractional-Order Modeling of Ultra-High Density Capacitors 

Visit the official website of this event for more information. 

 
Participants of COST/IEEE-CASS Seasonal Training School (Brno 2016) 

• Fractional order controllers: from theory to application, September 5-8, 2017, Catania (Italy) 
This Training School was dedicated to the design, implementation and application of FOCs, where the 
design methods of FOC and of FOC-based control architectures were described and explained in details. 
Moreover, the realization of FOC was discussed and techniques analyzed to make the trainees aware of 

https://fractional-systems.eu/ws-delft-pub/
https://fractal.utko.feec.vutbr.cz/
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the implementation issues. Finally, within computer labs some real cases were considered to show the 
application of fractional controllers to different engineering problems of practical interest. 
Training School was covered the following trainers and their topics: 

o Igor Podlubny (Slovakia): Mathematical and computational tools for fractional-order control 
o Blas M. Vinagre (Spain) : Fractional Order Control: Fundamentals and User Guide 
o Guido Maione (Italy): Some design approaches of fractional order controllers for electro-

mechanical and automotive systems 
o Paolo Lino (Italy): Modelling and implementation issues of fractional order controllers: Some 

case studies 
o Vicente Feliu (Spain): Fractional order robust control of mechatronic systems 
o Duarte Valerio (Portugal): Fractional Calculus with variable orders 
o Milan Rapaić (Serbia): Modelling, Identification and Simulation of Non-rational Linear 

Systems 
o Karabi Biswas (India): From the definition to the realization of single component fractor 
o Arturo Buscarino (Italy): Jump resonance fractional order circuits: theory and experiments 

The 4-day Training School was attended by 20 Trainees from Spain, Italy, Belgium, Egypt, Czech 
Republic, Serbia, Montenegro, Poland, and Turkey. For more information, please check the web. 

 
Computer labs on fractional order robust control with Vicente Feliu (Catania 2017) 

• Advantages of the fractional models in dealing with real world problems, October 8-12, 2018, 
Istanbul (Turkey) 
The Training School was organized by Dumitru Baleanu and brought together top international 
specialists from diverse countries and through active participation of the Trainees also initiated fruitful 
collaboration in the field of fractional dynamics focusing on finding new analytical and numerical 
methods as well as techniques to model the complexity of the dynamics of some real-world systems. 
The Training School was providing proves on the advantage of using models based on fractional 
calculus, contributed to the identification of the unknown phenomena and the stability of the fractional 
tumor model and may more. 

o Dumitru Baleanu (Turkey): Beyond the classical fractional calculus: theory and experimental 
evidences 

o Emmanuel Hanert (Belgium): Application of fractional models to life-science problems: 
Examples from ecology and pharmacokinetics 

o Sverre Holm (Norway): Fractional models in wave propagation and applications in medical 
imaging and acoustics 

o S Hassan HoseinNia (Netherlands): Application of fractional order Control in precision 
mechatronics 

o Guido Maione (Italy): Fractional-order modeling and control in common rail injection systems 
o Piotr Ostalczyk (Poland): Vector-matrix description of the variable fractional-order linear 

systems 

https://fractional-systems.eu/ts2017_catania/
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o Milan Rapaic (Serbia): Real-time identification and parameter estimation in fractional and 
irrational linear systems 

o Celaleddin Yeroglu (Turkey): Fractional Order Model Reference Adaptive Control 
Applications 

o Dorota Mozyrka (Poland): Discrete-time systems with the Caputo-type fractional order 
operator – stability issues and applications in consensus modelling. 

There were 139 applications to be Trainee at the Training School, where only 20 could be invited 
and get the support from the COST Action. For more details about this TS, please see the web. 

 
The audience of Advantages of the fractional models in dealing with real world problems (Istanbul 2018) 

• Computational Methods for Fractional-Order Problems, July 22-26, 2019, Bari (Italy) 
A large extent of systems in biology, economics, engineering, physics, and other areas, are modeled by 
means of differential equations of fractional order whose correct treatment requires the attainment of 
advanced skills for numerical simulations. The aim of this Training School is to provide to young 
researchers the background for understanding the mathematics beyond fractional operators and devise 
accurate and reliable computational methods. In particular, the development of numerical software for 
the effective treatment of fractional-order systems will be one of the main assets of the training school 
with the possibility of organizing some laboratory tutorials. 

o Kai Diethelm (Germany): Introduction to FDEs, numerical methods for FDEs 
o Roberto Garrappa (Italy): Introduction to fractional calculus, efficient implementation of 

numerical methods for FDEs 
o Guido Maione (Italy): Numerical methods in engineering and control theory 
o Maria Luisa Morgado (Portugal): Collocation methods for FDEs 
o Marina Popolizio (Italy): Matrix methods for FDEs and partial FDEs 
o Magda Stela Rebelo (Portugal): Matlab implementation of collocation methods 
o Abner J. Salgado (USA): Numerical methods for fractional Laplacian 
o Martin Stynes (China): Time-fractional initial-boundary value problems 
o Yubin Yan (UK): Numerical methods for fractional partial differential equations 

 

https://fractional-systems.eu/ts-2018/
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Enthusiastic participants of the Training School (Bari 2019) 

 
Based on the Application forms, the final 40 Trainees from Croatia, Czech Republic, France, Germany, 
Ireland, Italy, Poland, Portugal, Romania, Serbia, Slovakia, Spain, and Turkey were participating at the 
Training School, whereas 19 Trainees were financially supported via COST Action CA15225. More 
information about this TS can be found here. 

Short Term Scientific Missions 

Short Term Scientific Missions (STSMs) are institutional visits aimed at supporting individual mobility, 
fostering collaboration between individuals. STSM participants were engaged in an official research programme 
as a PhD Student or postdoctoral fellow or were employed by, or affiliated to, an institution, organization or 
legal entity which has within its remit a clear association with performing research. The institutions / 
organization or legal entity, where participants did pursue their main strand of research were considered as 
Home institutions. The Host institution were the institution / organization that hosted the STSM participant 
receiving financial support from the COST Action as a Grant. 

During the Grant Periods that were not harmed by the COVID, 45 STSMs were granted to support 580 days of 
participants’ missions: 

• 7 during 1st Grant Period 
• 17 during 2nd Grant Period 
• 14 during 3rd Grant Period 
• 7 during 4th Grant Period 

The most of the STSMs were used to visit institutions and partners within the Europe. Anyway, some also used 
the possibility to visit colleagues and initiate cooperation with research groups from Canada, India, USA, United 
Arab Emirates, Russian Federation or Israel. For more details about STSMs supported by the COST Action, 
please see the full list. 

 

https://fractional-systems.eu/ts-bari-2019-pub/
https://fractional-systems.eu/stsms/
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ITC Conference Grants 

The ITC Conference Grants was a new networking tool introduced by COST Association during the 2nd Grant 
Period of COST Action CA15225. The ITC Conference Grants were aimed at supporting PhD students and ECI 
researchers from Participating ITC (Inclusiveness Target Country) to attend international science and 
technology related conferences not specifically organized by the COST Action. 

• Piotr Oziablo (Poland), Numerical simulations for fractional variable-order difference eigenfunctions, 
In proc. 9th Vienna Conference on Mathematical Modelling, Feb. 21-23, 2018, Vienna, Austria, doi: 
10.11128/arep.55.a55260 

• Oana Brandibur (Romania), Stability analysis of a two-dimensional incommensurate fractional-order 
conductance based neuronal model, In Proc. Emerging Trends in Applied Mathematics and Mechanics 
2018, June 18-22, 2018, Krakow, Poland 

• Aleksei Teplakov (Estonia), FOPID Controllers and Their Industrial Applications: A Survey of Recent 
Results, In Proc. 3rd IFAC Conference on Advanced in PID Control, May 9-11, 2018, Ghent, Belgium, 
doi: 10.1016/j.ifacol.2018.06.014 

• Jan Dvorak (Czech Republic), Design of Fully-Differential Frequency Filter with Fractional-Order 
Elements, In Proc. 2018 41st Int. Conf. Telecommunications and Signal Processing, July 4-6, 2018, 
Athens, Greece, doi: 10.1109/TSP.2018.8441259 

• Tarik Uzunovic (Bosnia and Herzegovina), Comparison of different methods for digital fractional-order 
differentiator and integrator design, In Proc. 2018 41st Int. Conf. Telecommunications and Signal 
Processing, July 4-6, 2018, Athens, Greece, doi: 10.1109/TSP.2018.8441509 

• Lukas Langhammer (Czech Republic), Fully-Differential Multifunctional Electronically Configurable 
Fractional-Order Filter with Electronically Adjustable Parameters, In Proc. 22nd Int. Conf. Electronics 
2018, Palanga, Lithuania, doi: 10.5755/j01.eie.24.5.21841 

• Andrej Novak (Croatia): Averaged fractional control, In Proc. 12th AIMS Conf. Dynamical Systems, 
Differential Equations and Applications, July 5-9, 2018, Taipei, Taiwan. 

• Norbert Herencsar (Czech Republic), All-Pass Time Delay Circuit Magnitude Response Optimization 
Using Fractional-Order Capacitor, In Proc. 2018 61st IEEE International Midwest Symposium on 
Circuits and Systems, August 5-8, 2018, Windsor Canada, doi: 10.1109/MWSCAS.2018.8624059. 

• Aslihan Kartci (Czech Republic), CMOS-RC Colpitts Oscillator Design Using Floating Fractional-
Order Inductance Simulator, In Proc. 61st IEEE Int. Midwest Symposium on Circuits and Systems, 
August 5-8, 2018, Windsor, Canada, doi: 10.1109/MWSCAS.2018.8623859. 

• Aleksei Teplakov (Estonia), Design of a Generalized Fractional-Order PID Controller Using 
Operational Amplifiers, In Proc. 25th IEEE Int. Conf. Electronics, Circuits, & Systems, December 9-
12, 2018, Bordeaux, France, doi: 10.1109/ICECS.2018.8617954 

• Oana Brandibur (Romania), Fractional-order versions of neuronal models, In Proc. 5th Int. Conf. 
Mathematical NeuroScience, June 23-26, 2019, Copenhagen, Denmark 

• Aslihan Kartci (Czech Republic), Synthesis and Design of Floating Inductance Simulators at VHF-
Band Using MOS-Only Approach, In Proc. 62nd IEEE International Midwest Symposium on Circuits 
and Systems, Aug. 4-7, 2019, Dallas, USA, doi: 10.1109/MWSCAS.2019.8885048 

• Juan Chen (Estonia), Observer Design for Boundary Coupled Fractional Order Distributed Parameter 
Systems, In Proc. 7th Int. Conf. Control, Mechatronics and Automation, Nov. 6-8, 2019, Delft, 
Netherlands, doi: 10.1109/ICCMA46720.2019.8988754 

 

  

https://doi.org/10.11128/arep.55.a55260
https://doi.org/10.1016/j.ifacol.2018.06.014
https://doi.org/10.1109/TSP.2018.8441259
https://doi.org/10.1109/TSP.2018.8441509
https://doi.org/10.5755/j01.eie.24.5.21841
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Additional Outputs 

Next to the above organized events and supported networking tools, the possibility to better know each other, 
discuss, share, and broaden the knowledge among the participants enabled the cooperation resulting in join 
research activities. Not all of them are directly notable, but submitting join project proposals – many of them 
being later funded, and writing join research papers may be seen as the other visible outputs of the COST Action 
CA15225. 

Join projects 
Research projects submitted within international consortia that stemmed from COST Action CA15225 prove 
the networking within the Action to be functional. Although not all from the below listed projects were later 
funded, thanks to the Action making the networking possible, the initial step in solving the common issues 
together is understood as a major impact fully following the African proverb: 

If you want to go fast, go alone. If you want to go far, go together. 

Projects resulting from Action activities: 

• IRES Site: Fractional-Order Circuits and Systems Research Collaboration with EU COST Action, US 
National Science Foundation, call Standard Grant, proposers: Todd J. Freeborn (US), Jaroslav Koton 
(CZ); funded, grant No. 1951552, period: 2020-2023  
(https://www.nsf.gov/awardsearch/showAward?AWD_ID=1951552) 

• Fractional Dynamical Models and Their Applications, National - Scientific and Technological Research 
Council of Turkey (TUBITAK), proposers: Dumitru Baleanu (TR), Ozlem Defterli (TR); funded, grant 
No. TBAG 117F473, period 2018-2020 

• Microlocal analysis and applications, Serbian Academy of Science and Arts, proposer: Stevan Pilipovic 
(RS); funded 

• Analogue fractional-order systems, their design and analysis, National - Czech Ministry of Education, 
Youth and Sports, proposer: Jan Jerabek; funded, grant No. LTC18022, period: 2018-2020 
https://starfos.tacr.cz/en/project/LTC18022 

• Advanced Robust Fractional Order Control of Dynamical Systems: New Methods for Design and 
Realization – ADFOCMEDER, Translational: bilateral cooperation Italy-Serbia, proposers: Guido 
Maione (IT), Mihailo P. Lazarević (RS); funded 

• Intelligent Control Systems for Industry 4.0, Estonian Research Council, proposer: Eduard Petlenkov 
(EE); funded, project No. PRG658, period: 2020-2024,   
https://www.etis.ee/Portal/Projects/Display/79982ae6-2af4-477d-9909-b056b5771dad 

• Applied mathematical analysis tools in modeling biophysical phenomena, Bilateral Project Serbia-
Croatia, proposers: Sanja Konjik (RS), Davor Horvatić (CR); funded, period: 2019-2020, 
https://people.dmi.uns.ac.rs/~sanja.konjik/research.html 

• Prediction tools for the mechanical behavior of concrete over long time scales, German Federal Ministry 
of Education and Research, proposers: K. Diethelm (DE), R. I. Leine (DE); funded. 

• Fractional-order signal processing and applications, SK-SRB, Slovak Research and Development 
Agency, proposers: Tomas Skovranek (SK); funded 

• Efficient and reliable methods for handling fractional calculus based mathematical models, German 
Research Foundation, proposers: K. Diethelm (DE), A. D. Freed (US), S. B. Damelin (US); under 
evaluation 

• FRACtional DEVices, HORIZON-ERC-SYG, proposers: Riccardo Caponetto (IT), Biswas Karabi 
(India), Jaroslav Koton (CZ); not funded 

• Design and implementation of fractional-order impedance elements based on distributed resistive-
capacitive layered structures, National - Czech Science Foundation, call Standard 2021, proposer: Jan 
Jerabek (CZ); not funded 

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1951552
https://starfos.tacr.cz/en/project/LTC18022
https://www.etis.ee/Portal/Projects/Display/79982ae6-2af4-477d-9909-b056b5771dad
https://people.dmi.uns.ac.rs/~sanja.konjik/research.html
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• Development of fundamentals of design and implementation of distributed resistive-capacitive 
elements with fractional impedance, Transnational - Czech Science Foundation, call International 2020, 
proposers: Jaroslav Koton (CZ), Peter A. Ushakov (RU); not funded 

• SCANner for DIAbetes: toward a multi-technology approach for non-invasive glucose monitoring, 
H2020-FETOPEN-2018-2020, proposers: ES, Andriukaitis Darius (LT), FR, UK, DE, IT; not funded 

• Development of fractional-order circuits for biological applications, National – H.F.R.I., proposer: 
Costas Psychalinos (GR); not funded 

• Improving the Modelling of Anomalous Diffusion and Viscoelasticity, National - Portuguese 
Foundation for Science and Technology, proposers: Luis Ferras (PT), Luisa Morgado (PT); not funded 

• Influence of topology, delayed connectivity and memory on the qualitative behavior of dynamical 
systems on networks and applications, UEFISCDI – Romania, proposers: Eva Kaslik (RO), Mihaela 
Neamtu (RO); not funded 

• Modeling and simulation of the mechanical behavior of CFRP materials, German Federal Ministry of 
Education and Research, proposers: R. I. Leine (DE), A. Lion (DE), K. Diethelm (DE); not funded 

• New mathematical modeling approach of heat and mass transfer phenomena in food engineering in the 
framework of fractional calculus, Bilateral Project Serbia-India , proposers: Sanja Konjik (RS), Shilpi 
Jain (India); not funded 

• Fundamental research on solid-state fractional-order elements' design, National - Czech Science 
Foundation, call Standard 2022, proposer: Jaroslav Koton (CZ); not funded 

 

Join publications 

Publications were dominant form of join cooperation between very close or even interdisciplinary research 
groups and individuals being active in COST Action CA15225 activities. Below, there is a list of Journal and 
conference papers, where some of are used in Part II of this Action Book to give an insight to research 
conducted within this COST Action. 

Journal Papers 
• Bertsias, P., Psychalinos, C., Radwan, A. G., & Elwakil, A. S. (2017). High-Frequency Capacitorless 

Fractional-Order CPE and FI Emulator. Circuits, Systems, and Signal Processing, 37(7), 2694-2713. 
doi: 10.1007/s00034-017-0697-0 

• Tsirimokou, G., Kartci, A., Koton, J., Herencsar, N., & Psychalinos, C. (2018). Comparative Study of 
Discrete Component Realizations of Fractional-Order Capacitor and Inductor Active 
Emulators. Journal of Circuits, Systems and Computers, 27(11), 1850170. doi: 
10.1142/s0218126618501700 

• Abdelaty, A. M., Elwakil, A. S., Radwan, A. G., Psychalinos, C., & Maundy, B. J. (2018). 
Approximation of the Fractional-Order Laplacian $s^alpha$ As a Weighted Sum of First-Order High-
Pass Filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(8), 1114-1118. doi: 
10.1109/tcsii.2018.2808949 

• Kapoulea, S., Psychalinos, C., & Elwakil, A. S. (2018). Minimization of Spread of Time-Constants and 
Scaling Factors in Fractional-Order Differentiator and Integrator Realizations. Circuits, Systems, and 
Signal Processing, 37(12), 5647-5663. doi: 10.1007/s00034-018-0840-6 

• Koton, J., Kubanek, D., Herencsar, N., Dvorak, J., & Psychalinos, C. (2018). Designing constant phase 
elements of complement order. Analog Integrated Circuits and Signal Processing, 97(1), 107-114. doi: 
10.1007/s10470-018-1257-7 

• Tepljakov, A., Alagoz, B. B., Gonzalez, E., Petlenkov, E., & Yeroglu, C. (2018). Model Reference 
Adaptive Control Scheme for Retuning Method-Based Fractional-Order PID Control with Disturbance 
Rejection Applied to Closed-Loop Control of a Magnetic Levitation System. Journal of Circuits, 
Systems and Computers, 27(11), 1850176. doi: 10.1142/s0218126618501761 

https://doi.org/10.1007/s00034-017-0697-0
https://doi.org/10.1142/S0218126618501700
https://doi.org/10.1109/TCSII.2018.2808949
https://doi.org/10.1007/s00034-018-0840-6
https://doi.org/10.1007/s10470-018-1257-7
https://doi.org/10.1142/S0218126618501761
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• Kubanek, D., Freeborn, T., Koton, J., & Herencsar, N. (2018). Evaluation of (1+ α) Fractional-Order 
Approximated Butterworth High-Pass and Band-Pass Filter Transfer Functions. Elektronika Ir 
Elektrotechnika, 24(2). doi: 10.5755/j01.eie.24.2.20634 

• Kartci, A., Agambayev, A., Herencsar, N., & Salama, K. N. (2018). Series-, Parallel-, and Inter-
Connection of Solid-State Arbitrary Fractional-Order Capacitors: Theoretical Study and Experimental 
Verification. IEEE Access, 6, 10933-10943. doi: 10.1109/access.2018.2809918 

• Tepljakov, A., Alagoz, B. B., Yeroglu, C., Gonzalez, E., Hosseinnia, S. H., & Petlenkov, E. (2018). 
FOPID Controllers and Their Industrial Applications: A Survey of Recent Results. IFAC-
PapersOnLine, 51(4), 25-30. doi: 10.1016/j.ifacol.2018.06.014 

• Alagoz, B. B., Tepljakov, A., Yeroglu, C., Gonzalez, E., Hosseinnia, S. H., & Petlenkov, E. (2018). A 
Numerical Study for Plant-Independent Evaluation of Fractional-order PID Controller 
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Introduction 

Fractional calculus is a powerful tool for modelling phenomena arising in diverse fields such as mechanics, 
physics, engineering, economics, finance, medicine, biology, chemistry, etc. It deals with derivatives and 
integrals of arbitrary real (or even complex) order, thus extending capabilities of the classical calculus, but also 
introducing novelties in theoretical and applied research. The focus of this task was on enhancement of existing 
and development of new numerical and analytical methods for derivatives and integrals of fractional orders, 
and methods for solving ordinary and partial differential equations with derivatives of noninteger orders. 

Fractional derivatives and the wave equation 

Models that describe waves occurring in the viscoelastic media are given in the form of fractional differential 
equations supplied with certain initial and/or boundary conditions, and are derived by the rheological analogy 
from equations that postulate basic physical laws. The presence of fractional derivatives in these models is 
natural in a sense, due to the viscoelastic character of the media or material under consideration. The latter has 
been described by different constitutive equations involving derivatives of real and also complex order, such as 
the fractional generalized Zener, Maxwell or Kelvin-Voigt model. Wave propagation phenomena has been 
studied on finite and infinite spatial domain. Recent research has revealed that the use of fractional derivatives 
of complex order in these models could help in resolving some effects that were detected only experimentally 
and numerically. We were concerned with the questions of solvability and regularity of solutions, 
thermodynamical restrictions, impact of the initial data and boundary conditions, numerical verifications, etc. 

In [1] and [2] we studied generalizations of the wave equation for the case of viscoelastic media described by 
fractional Zener models using fractional differential operators of complex order. We presented two initial-
boundary value problems, investigated them, and provided comparative analysis of techniques used for solving 
the problems. In both models u, σ and ε denote displacement, stress and strain, respectively, x denotes the spatial 
coordinate oriented along the axis of the rod and t denotes the time. Further, both models involve various 
parameters - coefficients and orders of fractional derivatives, whose restrictions follow from the Second Law 
of Thermodynamics. Viscoelastic properties of the material was modelled by the use of fractional derivatives 
that were inserted into the constitutive equation. The first problem describes a viscoelastic rod model of finite 
length l, and consists of a system of equations that corresponds to its isothermal motion, which in the 
dimensionless form reads: 
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and boundary conditions 

(0, ) ( )=u t U t , ( , ) 0=u l t . 

Initial conditions show that there is no initial displacement, velocity, stress and strain, while boundary 
conditions prescribe displacement at the rod end points x = 0 and x = l. The second problem describes a 
viscoelastic rod model whose length is now infinite. Thus the form of system (1) remains unchanged, with 
x  instead of [0, ]x l , while the initial and boundary conditions change to: 

0( ,0) ( )=u x u x , 0( ,0) ( )
=


u x v x

t
, ( ,0) 0 =x , ( ,0) 0 =x , 

and 

lim ( , ) 0
→

=
x

u x t . 

We proved that the first problem has a unique distributional solution given as 

0

( , ) ( )( , ) ( ) ( , ) =  = −
t

tu x t U K x t U t K x t d , 

(0, ]x l , 0t , where 

0

0

1 exp( ( ) ) exp( ( ) )( , ) exp( )
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+ 
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 −
= + − − − 


s i

s i

sM s x sM s xK x t ts ds
i sM s l sM s l

, 

with 0 0s . For the second problem we obtained a unique distributional solution of the form 

( ), 0( , ) ( , ) ( ) '( ) 0( ) ( ) =   + x tu x t K x t u x t v x t , 

x , 0t , where 
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+
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x . 

Control problems for fractional differential equations 

General problem of control theory amounts to choosing certain control which would lead a system (e.g., 
governed by a system of (partial) differential equations) from the given initial state to the prescribed final state. 
Such types of problems have obviously great potential in the sense of various applications and, thus, the control 
theory is very well developed. It is hard to say where the first mathematical treatment of the problem essentially 
originates but one can find lots of information in the standard books. However, in certain situation it is not 
possible to precisely determine the coefficients governing the process and it is natural that the coefficients 
depend on another (essentially stochastic) variable. In such a situation, we cannot require exact controllability 
of the system but so-called average controllability. In the contribution [3], we extended mentioned results 
concerning the averaged control on equations containing fractional derivatives. 

We have continued in this direction by considering control problem not only in fractional but also in nonlinear 
setting. Such kind of questions are of great importance since the most precise way of describing natural 
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phenomena is in the nonlinear framework. The nonlinearity, however, significantly complicates solution 
procedures since it prevents global apriori estimates. In the frame of the project, through several STSMs and 
workshops, we were able to introduce a procedure that enables us to connect local estimates and to obtain 
existence of optimal control. In the essence of the method is local theory of uniqueness of ODEs and Leray-
Schauder fixed point theorem. The initial results are presented in [4]. 

Fractional derivatives in the image processing 

Digital image inpainting is the problem of modifying parts of an image such that the resulting changes are not 
trivially detectable by an ordinary observer. It is used to recover the missing or damaged regions of an image 
based on the data from the known regions. It represents an illposed problem because the missing or damaged 
regions can never be recovered correctly with absolute certainty unless the initial image is completely known. 
In [5] we studied the application of the fractional generalization of the Cahn-Hilliard type equations (CHTE) to 
the image inpainting problem and proposed a fast algorithm for obtaining its numerical solutions. Through 
several examples, we showed that fractional PDEs produce superior results over integer order PDEs. Also, we 
derived a fast algorithm based on the matrix decomposition in the local as well as in the non-local case. In both 
cases, the idea was to use appropriate arrangements of the discrete equations obtained by the finite difference 
method so that the computed matrix of the linear system exhibits a sparse structure with block symmetry. This 
structure enabled us to derive the recursive relations for the computation of the decomposition that, by using 
simple backward and forward substitutions, yields the solution. We carried out a comparison of this approach 
with the standard algorithms for numerical solutions of the sparse linear system. 

Fractional derivatives and the calculus of variations 

The focus was on the optimization of a functional whose Lagrangian depends not only on the integer-order 
derivatives of the generalized coordinate, but also on its fractional derivatives. Variational formulations of 
problems are very important in physics. Fractional generalization of the classical theory has found many 
applications, e.g. in the optimal control. The list of relevant topics within this theory includes well-posedness 
of constrained and unconstrained fractional variational problems, optimality conditions and the Euler-Lagrange 
equations, generalizations to higher dimensions, fractional variational symmetries, infinitesimal invariance, 
Neother’s type theorems, fractional conservation laws, discrete-time fractional variational problems, fractional 
variational calculus on time scales, higher order and isoperimetric problems, complementary fractional 
variational problems, approximations via the expansion formula, numerical calculations, etc. 

In [6] we studied Herglotz variational problems. Herglotz variational principles are of high importance in 
optimization theory, mechanics and physics, since they provide a consistent method to associate a Lagrangian 
to the given differential equation such that it becomes the generalized Euler-Lagrange equation of that 
Lagrangian. We derived optimality conditions for variational problems of Herglotz type whose Lagrangian 
depends on fractional derivatives of both real and complex order, and resolve the case of subdomain when the 
lower bounds of variational integral and fractional derivatives differ. Moreover, we considered a problem of the 
Herglotz type that corresponds to the case when the Lagrangian depends on the fractional derivative of the 
action and gave an example of the problem that corresponds to the oscillator with a memory. Since our 
assumptions on the Lagrangian are weaker than in the classical theory, we analyzed generalized Euler-Lagrange 
equations by the use of weak derivatives and the appropriate technics of distribution theory. Such an example 
was discussed in details. 

Acknowledgement–This article is based upon work from COST Action CA15225, a network supported by 
COST (European Cooperation in Science and Technology). 
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Abstract: Fractional-order controllers possess more design flexibility than the integer-order counterparts and 
may improve the compromise between stability robustness and dynamic performance. This extended abstract 
synthesizes some relevant results that were obtained, during the period of the COST Action CA15225, in design 
and application of fractional-order controllers. Some important achievements were possible thanks to the links 
established with researchers from countries in the COST Action. 
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Extended abstract 

In this abstract, we report a method to optimize controllers for permanent magnet synchronous motors (PMSM). 
Secondly, we describe the structure and design of a new class of controllers. 

PMSM are wide-spread in industry [1] but their control requires fast dynamic response and effective disturbance 
rejection. The block scheme in Fig. 1 is for the q-axis of the reference frame. PI controllers are usually employed 
in C1 and C2, the first for controlling the stator current component in the reference frame fixed to the rotor (isq), 
the second for controlling the rated angular speed of the motor (ωr). 

 
Figure 1: Block scheme of the control system with PMSM 

Firstly, we replaced the PI controller in C2 by a fractional-order PI (FOPI) controller with transfer function
(1 )( )





+= I IK T s
C s

G s , where υ is the order of integration, whereas C1 was a PI controller [2]. We designed the FOPI 
controller by a frequency-domain loop-shaping technique based on robustness and performance specifications. 
Moreover, we applied a set-point fractional/integer-order pre-filter by a dynamic inversion technique. 
Subsequently, we considered FOPI controllers for both C1 and C2 [3]. The approach allowed to set the 
parameters of C1 and C2 (υ1, TI1, KI1, υ2, TI2, KI2) by expressions based on specifications. 

In [1], fractional-order proportional-integral-derivative (FOPID) controllers and distributed-order proportional-
integral-derivative (DOPID) controllers improved robustness, disturbance rejection, and other performance 
indexes. The strategy was to optimize the controllers C1 and C2 in two successive steps, while using FOPID or 
DOPID controllers. The FOPID transfer function is 
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where 𝜆 and 𝜇 are non-integer orders, KP, KI, and KD are the controller gains, and Tf  is a filtering time constant. 
If DOPID are considered, then 

 
0 1 2
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1/3

3 5 6( )
1

+ + + + +
=

+

k k k
s s s

C
f

k k s k s
G s

T s
. (2) 

To make the control system optimal, we used performance and robustness measures. The maximum noise 
sensitivity is 

 ( )
1 ( ) ( )0

max 

 


+


= C

C P

G j
n G j G jM , (3) 

where / =n D fM K T  for FOPID controllers, whereas /=n D fM K T  for DOPID controllers. The maximum 
sensitivity is 

 1
1 ( ) ( )0
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+


=

C PS G j G jM , (4) 

which is obtained at frequency 𝜔𝑠. The maximum of the resonant peak is 
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1 ( ) ( )0
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C P

K G j j
G j G jQ , (5) 

which is obtained at frequency ωq. 

In the inner loop, to track a current reference, we optimize the controller by maximization of 
(1 )  = + −C I BJ K , with 0.4 < σ < 1, including the integral gain and bandwidth. Then, for FOPID 

controllers, optimization is defined by 

 
, , , , , ,

max
   P I D s q

CK K K
J , (6) 

subject to closed-loop stability and ,max/ = n D f nM K T M , ,maxs sM M , maxQ Q . For DOPI controllers, 
optimization is defined by 

 
0 1 2 3 4 5 6, , , , , , , ,

max
 s q

Ck k k k k k k
J , (7) 

subject to closed-loop stability and ,max/= n D f nM K T M , ,maxs sM M , maxQ Q . 

In the outer loop, speed reference tracking must be accompanied by rejection of step-like disturbances, which 
is achieved if the controller has as large values of amplitude as possible at all frequencies. Then, we maximize 
the minimum of the controller amplitude: 

   max max ( )CG j , (8) 

subject to closed-loop stability and  ,maxn nM M ,maxs sM M , maxQ Q , with ,minP PK K , ,minI IK K  

,minD DK K  for FOPID controllers, and ,mini ik k  (i = 0,1,2,3,4,5,6) for DOPID controllers. We used 

,max 10=nM , ,max 2=sM , and max 1.01=Q . 

We obtained the first FOPID/DOPID controller (C1) by considering the plant transfer function 1

11 (1 )(1 )( ) + +=
e

K
T s T sG s

, where 1 1/= SK R   (RS is the stator resistance), 1 /= S ST L R  (LS is the stator inductance), Te is for all elements 

in the inner loop. We obtained the second FOPID/DOPID controller (C2) by considering ( )
2 (1 )(1 )( )
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for all other elements in the loop, where GFOS(s) is the fractional-order transfer function from the inner closed 
loop, Kc is the torque constant, np is the number of pole pairs, J is the moment of inertia, τss and τcs are the speed 
and current sensors time constants. 

Since optimization is hardly solvable, a Generalized Particle Swarm Optimization algorithm was applied. The 
optimized FOPID and DOPID controllers were tested by using an accurate nonlinear state-space model of the 
control system. The model includes uncertainty, noise, parameter variations, and delays [2]-[3]. 

FOPID and DOPID were compared to PI controllers. The main parameters of the controllers are in Table 1. The 
phase margins of the inner and outer loops were PM1 = 32° and PM2 = 106° with FOPID controllers, PM1 = 88 
and PM2 = 128° with DOPID controllers. Moreover, FOPID and DOPID controllers reduce the sensitivity. The 
time response was to a typical speed reference: initially, a step input of 1000 rad/s is applied; secondly, the 
motion is stopped; finally, the motion is reverted to −1000 rad/s. Moreover, a load disturbance is superimposed 
during the final phase. The q-axis stator current and the angular speed obtained by the controllers are shown in 
Fig. 2 and Fig. 3, respectively. 

Despite the current oscillations, despite uncertainties and delays, current reference tracking is robustly achieved. 
In speed control, FOPID and DOPID controllers reduce the maximum overshoot and allow a fast response with 
zero steady-state error (first phase); PI controllers exhibit a higher undershoot (second phase); DOPID 
controllers reduce oscillations and response time in the third phase, while rejecting disturbance much better than 
other controllers. The lowest value of ITAE is 0.52 by DOPID controllers. The control system was also tested 
against 20% variations of RS and LS. Again, the lowest ITAE value (0.55) was given by DOPID controllers, and 
performance was not much perturbed (see [1]). 

 
 (a) (b) (c) 

Figure 2: Current in the first test: (a) PI controllers (IOPID), (b) FOPID controllers, (c) DOPID controller 

Table 1: Parameters of the controllers 

Controller Parameters 
PI inner loop KP = 5.98 KI = 3.71·103    

FOPID inner loop KP = 9.36 KI = 159.20 KD = 3.41·10‒4 λ = 8.86  μ = 1.36 
DOPID inner loop 𝑘0 = 8.36    𝑘1 = 0.78    𝑘2 = 0.09    𝑘3 = 1.59    𝑘4 = −0.25    𝑘5 = −0.81    𝑘6 = 0.40 

PI outer loop 𝐾𝑃 = 0.02 𝐾𝐼 = 5.22    
FOPID outer loop 𝐾𝑃 = 0.02 𝐾𝐼 = 10.81 𝐾𝐷 = 2.56 ∙ 10−7 𝜆 = 0.6 𝜇 = 1.5 
DOPID outer loop 𝑘0 = 2.75  𝑘1 = −0.04  𝑘2 = −0.67  𝑘3 = 6.93  𝑘4 = −0.60  𝑘5 = −0.86  𝑘6 = 0.48 
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Figure 3: Angular speed in the first test: comparison between PI, FOPID, and DOPID controllers 

 

We also proposed a different controller, named CS-FLEC, in [4]-[7]. It is a fractional-order lead compensator 
(FLEC) made by the series of two elements that introduce phase leads in shifted and partially overlapping 
frequency ranges. This connection determines a nearly flat phase in a large frequency range. Moreover, a new 
method designs a robust controller for a class of benchmark plants that are difficult to compensate because of 
monotonically increasing lags. 

The first element of the CS-FLEC is 

 𝐻1(𝑠) = (
1 + 𝜏 𝑠

1 + 𝜏 Δ 𝑠
)

𝜈1
, (9) 

with 0 < 𝜈1 < 1, 𝜏 > 0, 0 < Δ < 1. The second element is 

 𝐻2(𝑠) = (
1 + 𝜏 Δ 𝑠

1 + 𝜏 Δ2 𝑠
)

𝜈2
, (10) 

with 0 < 𝜈2 < 1. If 𝜈1 = 𝜈2 = 𝜈 is chosen, the connection simplifies to 

 𝐻12(𝑠) = 𝐻1(𝑠)𝐻2(𝑠) = (
1 + 𝜏 𝑠

1 + 𝜏 Δ2 𝑠
)

𝜈
. (11) 

The proposed structure is a cascade of two FLECs with the same Bode plots, but the position on the 𝜔-axis of 
the second stage is shifted with respect to the first one (Fig. 4a). Each element in the CS-FLEC is approximated 
by a second-order rational transfer function [4], with sufficient accuracy in the frequency range of interest. The 
fourth-order approximation is advantageous, because the changes of coefficients due to passive component 
tolerances or to limitations of microprocessor words and quantization effects are contained, such that a low 
sensitivity to variations is obtained. 

The controller 𝐻(𝑠) = 𝐾𝑐  𝐻12(𝑠) is designed in the frequency domain by a practical pattern [4]. The strategy 
consists in compensating rapidly and monotonically increasing phase lags by the lead introduced in the same 
frequency range. Firstly, the gain crossover frequency (𝜔𝑝𝑔𝑐) and phase margin (𝑃𝑀𝑝) given by the plant are 
determined and Δ = 0.1 is set. 

1. To start, 𝜏 is set by 𝜏 = 1/(Δ0.5 𝜔𝑚1), where 𝜔𝑚1 is the frequency where 𝐻1(𝑠) gives the maximum lead. 
However, due to the lead by 𝐻2(𝑠), 𝐻(𝑠) reaches the maximum phase lead at 𝜔𝑚12 > 𝜔𝑚1. Hence, to put 
𝜔𝑚12 ≈ 𝜔𝑝𝑔𝑐, 𝜔𝑚1 is chosen such that 𝜔𝑚1 = ℎ 𝜔𝑝𝑔𝑐 with 0.5 ≤ ℎ ≤ 1, where ℎ is determined by few 
attempts, the first being ℎ = 1. 
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2. To set 𝜈1 and 𝜈2, the phase margin specification 𝑃𝑀 is used in 𝑃𝑀 = 𝑃𝑀𝑝 + 𝜈155° + 𝜈216°. It is suitable to 
choose 𝜈1 > 𝜈2 to avoid a large shift of the new gain crossover �̅�𝑔𝑐 beyond 𝜔𝑝𝑔𝑐. A rule of thumb is 𝜈1 = 3 𝜈2. 

3. Then 𝐾𝑐 is set such that 𝐾𝑐 ≤ 1/|𝐻12(𝑗𝜔𝑝𝑔𝑐) |. The new crossover �̅�𝑔𝑐, indeed, can also be less than 𝜔𝑝𝑔𝑐. 
This choice is convenient if a greater 𝑃𝑀 is required and if the slope of the phase diagram in �̅�𝑔𝑐 decreases. 

4. The performance is verified. If specifications are not met, then we go back to step 1 (or 3), decrease 𝜔𝑚1 (or 
𝐾𝑐), change 𝜏, etc. 

In [4], we considered two benchmark plant models that are difficult to compensate. Notable performance, low 
sensitivity and disturbance rejection were obtained. Fig. 4b shows the frequency responses in the case of the 
second model consisting of an integrator plus a time delay. Note that alternatives in choosing the number of 
connected FLECs and their free parameters make the CS-FLEC flexible and suitable for difficult control 
problems. 

 

Figure 4: CS-FLEC and compensation: (a) Bode phase diagrams of 𝐻1, 𝐻2, and 𝐻12 for 𝜈 =  𝜈1 = 𝜈2 = 0.3 (curves a1, 
a2, a12), 0.5 (curves b1, b2, b12), and 0.7 (curves c1, c2, c12); (b) Frequency response by the integrator plus time delay 

(dash-dotted lines), controller (dashed lines) and open-loop compensated system (solid lines) 

Conclusion and Future Work 

Fractional-order controllers design, approximation, and implementation continuously progresses by new 
strategies and techniques. We proposed some novel ideas regarding design and optimization or new structures 
that showed to be effective for classes of plants that are hard to compensate. Future work can change or improve 
the structure of FOPID and DOPID controllers and apply these controllers to different systems. Moreover, it 
will be possible to analyze new structures of controllers based on fractional-order lead or lag networks and 
consider special applications involving robotic manipulator and systems. 
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Introduction 

It has been recognised that fractional derivatives are appropriate for modelling materials as they undergo 
transformation [1]. It has also been shown that fractal structures can be used to represent materials with 
fractional derivative behaviour [2]. In this work a framework is developed to link both the fractal and fractional 
approach for modelling transformation processes. An iterative approach is taken to develop a fractal topology 
that can describe the material structure of phase changing materials.  Transfer functions based on fractional 
calculus are used to describe this topology and then applied to model phase transformations in liquid/solid 
transitions in physical processes [3]. Two types of transformation are tested experimentally, solidification of 
gelatine and melting of ethyl vinyl acetate (EVA).   

Theory 

To begin the analysis an assumption is made on the structure of the material at the start and end of the phase 
transition.  In Figure 1 a material is assumed to have the properties of a Newtonian fluid initially with viscosity 
𝜂0 and after transition to have the properties of an elastic solid with stiffness 𝐸1. The complex modulus G(s) for 
the system in transition varies as 𝐺(𝑠):  𝑠 𝜂0 →  𝐸1. This transformation can therefore be described by the 
Transition Function 𝐻𝑇(𝑠) 

𝐻𝑇(𝑠) =
𝐸

𝜂𝑠
                                                            (1) 

As a process this is represented in Figure 1. 

 

 

 

Figure 1 Material transition model 

If the change is not instantaneous, then one can use a fractional power 𝛽(t) of the Transition Function [4] as 
shown in Figure 2 

 

 

 

Figure 2 Time dependent material transition model 

so that the state of the system 𝐺𝛽(𝑠) at time t is given by  

                     𝐺𝛽(𝑠) = [𝐻𝑇(𝑠)]𝛽(𝑡) 𝑠 𝜂0 = [
𝐸1

𝑠 𝜂0
]

𝛽(𝑡)
 𝑠 𝜂0 = 𝐸1

𝛽(𝑡)(𝑠 𝜂0)1−𝛽(𝑡)       (2) 

 
This process can be related to fractal systems by first considering the fractal network in Figure 3. 

𝐻𝑇(𝑠) 𝐸 𝜂𝑠 

[𝐻𝑇(𝑠)]𝛽(𝑡) 𝜂𝑠 𝐸𝛽(𝑡)𝜂𝑠1−𝛽(𝑡) 
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Figure 3  Fractal Network and equivalent system 

Looking at the structures in Figure 3 one can write 

 𝑋 =
1

1

𝐸
+

1

𝑋

+
1

1

𝜂𝑠
+

1

𝑋

  (3) 

so that 

 𝑋 = (𝐸𝜂𝑠)0.5  (4) 

This gives rise to a fixed fractional order of 0.5.  For phase changing materials the fractional power changes as 
the transformation progresses requiring a more sophisticated model.  In Figure 4 a revised fractal network is 
considered where each spring is replaced by fractal sub network.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Revised Fractal Network  

 
Replacing all the spring elements with the fractal pattern 
 
 

(5) 
 
 
This approach can be reiterated with both elastic and viscous components to give a progression of fractional 
coefficients that follows a sigmoidal pattern as shown in Figure 5. 
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Figure 5 Power of s in fractal evolution 

If one iterates the process several times and plots the values the black point values are obtained in Figure 5. In 
practice it would not be expected that the material phase changes all occur in perfect synchrony.  To account 
for this and still allow for a fractal pattern it is more realistic to consider a random fractal pattern resulting from 
a distribution of mechanical impedances which shifts as the transformation progresses.  The continuous gradual 
change can then be represented by the red trend line in the Figure 5.  

Testing and Results 

Testing of the materials was performed using a squeeze film rheometer with 25mm diameter parallel steel plates 
with a gap of 200mm for gelatine and 1000mm for EVA.  The magnitude and phase responses of the gelatine 
were recorded as cure progressed with time and were recorded for EVA as the material melted as a function of 
temperature. Fractional models were fitted to the spectra using the generalised reduced gradient solver in Excel 

The evolution of the fractional power of  𝛽 is presented in Figure 6 for gelatine as a function of time and in 
Figure 7 for EVA as a function of temperature. 

 

 

Figure 6 Evolution of 𝛽(𝑡) for Gelatine 

The model for gelatine is based on the transition from a Kelvin Voigt to an elastic material.  The evolution of 
the fractional power shown in Figure 6 does not show the low values at the early stages as seen in Figure 5.  
This is because when mixing the gelatine, it was necessary to heat the solution to 40C for one minute prior to 
testing.  Some chemical bonding will have already occurred before testing was undertaken. 

The results for EVA were established using two phases.  The first was modelled using an elastic to Kelvin Voigt 
transition and then a Maxwell to viscous transition for the second phase. The evolution of 𝛽 in Figure 7 does 
display the full sigmoidal pattern albeit that the transition is over the range 0.1 to 0.4 revealing that a fractional 
behaviour is also evident at the beginning and end temperatures.   
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Figure 7 Evolution of 𝛽(𝑇) for EVA 

Conclusion 

A fractal topology has been used to describe rheological phase transition in materials. This results in a sigmoidal 
shaped evolution of material properties that is often seen in practise. The fractal structure can be related to a 
fractional derivative modelling approach that has been used previously when characterising adhesive cure and 
which is used here to model the solidification of gelatine and the melting of EVA. The two materials were 
chosen to represent two different mechanisms of phase transition, chemical bonding for the solidification of 
gelatine and temperature induced melting for EVA.  

Acknowledgement‒This article is based upon work from COST Action CA15225, a network supported by 
COST (European Cooperation in Science and Technology). 
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Abstract: Very often solutions of fractional differential equations cannot be represented in a closed form or they 
have an extremely convoluted representation. Therefore, one of the key issues in fractional-order modeling is 
the design of efficient numerical schemes for solving differential equations with space and/or time fractional 
derivatives. In this abstract, we present a brief review of researches and activities related to the Task 1.4. 
“Developing efficient and accurate numerical schemes”, in order to highlight the main issues and pitfalls in the 
development of numerical methods for fractional-order problems and to identify some of the best strategies for 
an optimal and accurate solution of fractional differential equations. 

Keywords: Fractional differential equations, numerical methods, persistent memory term, accuracy. 

 

Extended Abstract 

Solutions of fractional differential equations (FDEs) can usually be represented just in terms of very complicated 
functions (often special functions depending on several parameters) and in several cases, as it is for nonlinear 
FDEs, there are no analytical solutions which can be represented in a closed form. For this reason, to properly 
simulate models relying on FDEs it is essential to devise reliable numerical methods and study their main 
properties. 

A Cost Action Training School specifically devoted to ”Computational methods for Fractional-order problems” 
has been organized in Bari (Italy) in 2019. This Training School aimed to provide young researchers with the 
background for understanding the mathematics beyond fractional operators and devising accurate and reliable 
computational methods. The presence of trainers active in different areas of numerical methods for fractional-
order problems, has allowed to cover the numerical solution of different problems in this fields, such as 

• Fractional differential equations 
• Space-time partial fractional differential equations 
• Fractional Laplacian 
• Evaluation of special functions 

The Cost Action Training School has also discussed the presence in the scientific literature of several methods 
which do not appear suitable for solving fractional-order problem and has brought out the need of distinguish 
reliable from non-reliable methods to be used in fractional calculus. For these reasons some of the trainers of 
the School have started a joint investigation whose main results have been collected in the paper [1]. 

Lack of regularity and polynomial approximation 

Given an initial value problem for a fractional differential equation 

 C
0 0( ) ( , ( )), (0) = =D y t f t y t y y  (1) 

it is widely known that the exact solution lacks smoothness since it expands in terms of integer and fractional 
powers, namely 

0
( ) 
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=
k

k
k

y t Y t , 
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and therefore even the first derivative of the solution y(t) is unbounded at t = 0 when 0 < α < 1. 

If not properly considered, this property may lead to unexpected results in numerical simulations. Indeed, most 
of the numerical methods are based on some kind of polynomial approximation of the solution y(t) or of the 
vector field f(t,y(t)) and polynomials can approximate just in a poor way functions with singularities of this 
kind. 

The lack of regularity of analytical solutions is a general feature of fractional differential equations. In [1] it has 
been considered a simple test problem such as 

 C
0 0( ) ( ), (0) = =D y t f t y y , 

and it has been shown that in order to force the solution y(t) to have a certain smoothness, it is necessary to 
impose that 0 = f(0) = f ’(0) = ..., a condition which appears unnatural and extremely restrictive for the majority 
of applications. Basically, assuming smoothness of the exact solution in order to derive high-order convergence 
properties of methods for fractional differential equations appears extremely unnatural. 

This is the reason by which it is not reasonable to try to obtain high-order convergence by means of methods 
based on polynomial approximations. 

Main numerical methods for FDEs 

In [2] it has been reviewed the main numerical methods available for approximating the solution of FDEs. In 
particular the following methods have been investigated 

• L1 scheme: it is obtained after approximating in the FDE (1) with 0 < α < 1, the first-order derivative 
in the definition of C

0 ( )D y t  by means of first-order finite difference 

1C
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for 1[ , ] + j jt t  and 1+= −j jh t t . 

• L2 scheme: it is the generalization of the L1 scheme to FDEs (1) with 1 < α < 2 and it is obtained by 
approximating the second-order derivative in the corresponding definition of C

0 ( )D y t  by means of 
central differences 
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for 1[ , ] + j jt t  and 1+= −j jh t t . 

• Product-integration rules: the are maybe the most used methods for FDEs and the are based on a piece-
wise polynomial approximation of the vector field f(τ,y(τ)) in the integral representation of the solution 
of the FDE (1) 
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(for simplicity we consider here the case 0 < α < 1). Constant and linear polynomials are usually 
considered (as first employed in [2, 3]) since higher-degree polynomials usually do not gives 
substantial improvement in the accuracy due to the aforementioned lack of regularity of the solution 
of FDEs. 

• Fractional linear multistep methods: these methods generalize the standard linear multistep methods 
for ordinary differential equations and are formulated according to 
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with ωn the convolution weights and wn,j starting weights introduced to deal with the lack of regularity 
at the origin. These methods, first introduced in [4]) offer a different way of generalizing to FDEs 
standard methods for ordinary differential equations but, unlike product-integration, they are able to 
provide high order of convergence since the introduction of the starting term. The evaluation of 
coefficients is however more complex than in product-integration rules. 

Efficient treatment of the memory term 

All the numerical approaches for FDEs have a convolution structure of this kind 

0
 −

=

= +
n

n n j n j
j

y c y  or ,
0

( ) − −
=

= +
n

n n j n j n j
j

y c f t y , n = 1,2,…,N, 

where the term n  depends on the initial conditions or other known information. This structure is consequence 
of the persistent memory of FDEs and of the convolution nature of fractional derivatives and integrals. 

On a mesh-grid of size N, evaluating this convolution in a naive way involves a computational effort 
proportional to O(N2) which turns out to be prohibitive in most of the applications. 

For this reason efficient algorithms must be considered. The main strategies which have been identified are: 

• Nested mesh techniques: not all the elements in the above convolution sums are used but some 
computation effort is saved by including only a subset of them 

• The finite memory principle: it is based on the finite memory principle by which defined a constant 
memory length ν > 0, it is forgotten the entire history of the convolution sum that is more than ν units 
of time in the past; basically the convolution sum is truncated and j runs from n − ν to n with the 
advantage of reducing the computational complexity from O(N2) to O(N) and the storage needs become 
constant, although there is a loss of accuracy. 

• Logarithmic memory: in approaches of this kind distant parts of the memory are not truncated but they 
are sampled on a coarser mesh and more than one coarsening level is introduced as pictured in the 
following scheme 
 

 
 

• Fast Fourier Transform Algorithm: the convolution sum is split in a suitable way thus to directly 
evaluate just short convolution sums (the triangles in the scheme) and an FFT algorithm is instead 
applied for the remaining parts of the convolution (the squares in the scheme). This approach does not 
affect the accuracy of the approximation and reduce the computational complexity form O(N2) to 
O(N(log2N)2). Its application requires a slightly bigger effort in coding [5]. 
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• Kernel compression schemes: this term refers to a collection of methods [6, 7] in which the kernel of 
the fractional integral or derivative is approximated, usually by means of some quadrature rule with 
exponential weights and the non-local FDE is then replaced by a (possible large) set of local ordinary 
differential equations, for which standard and very powerful methods are available. 

Some of the above mentioned methods can be however applied not only to FDEs (1) but also to slightly different 
problems. 

This is the case of fractional delay differential equations (FDDEs) in the form 

 
C

0 ( ) ( , ( ), ( )] , 0
( ) ( ) , 0

 

 

 = − 


= −  

D y t f t y t y t t
y t t t

 (2) 

where τ > 0 is a constant delay. In [8] it has been studied the problem of the correct initialization of FDDEs. 
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Abstract: Regarding the scientific activities of our team (D. Baleanu (TR-MC Member) and O.Defterli (TR-MC 
Substitute)), we listed in below a short summary of the published scientific results which contribute to the 
activities of COST Action CA 15225 such as Mathematical methods of fractional order integration and 
differentiation, Developing efficient and accurate numerical schemes, Fractionalizing standard models and 
Approximation of derivatives and integrals of fractional orders by new numerical and analytical methods; 
Fractionized models. 

Extended Abstract 

The notion of general classes of operators has recently been proposed [1] (see for example the Prabhakar’s 
class) as an approach to fractional calculus that respects pure and applied viewpoints equally. Several other 
named models of fractional calculus can fit within the class of operators defined by Prabhakar, and that this 
class contains both singular and non-singular operators together. It seems that, so far, there is not a unique 
fractional operator which can be used to describe all types of processes having different types of memory effects 
[2]. Besides, in the theory of fractional modelling constructed with correct dimensionality it is well-known to 
follow a so-called five-step method [3]. 

In the paper [4], we show a fractional-order mathematical model for a tumor-immune surveillance mechanism. 
We analyze the interactions between various tumor cell populations and immune system via a system of 
fractional differential equations. An efficient numerical procedure is applied to solve these FDEs by considering 
various fractional operators. The numerical simulations are presented for different values of fractional order 
(see Figure 1 for α = 0.9) and the asymptotic behavior of the tumor-immune surveillance dynamical system 
without chemotherapy treatment is presented for all three derivative operators in comparison with a real data 
set (see Figure 2 ). Moreover, the Table 1 shows that the absolute and relative errors for the fractional operator 
with Mittag-Leffler kernel are lower than all other derivative cases. These advantages compensate the additional 
complexity imposed by the use of the fractional operators in mathematical modeling. 

Table 1: Comparative results of the fractional and integer models vs real data 

Model α Absolute error Relative error 
Caputo 0.952 1.1271·10‒6 0.0265 
CF 0.92 1.3246·10‒6 0.0311 
ABC 0.9 2.9030·10‒5 0.0068 
Integer 1.0 4.9501·10‒6 0.1164 

 

Additionally, an optimal control strategy is imposed into the model to examine the effect of chemotherapy 
treatment. Simulation results show that the new presented model represents various asymptomatic behaviors 
that tracks the real data more accurately than the other fractional- and integer-order models. Numerical 
simulations also verify the efficiency of the proposed optimal control strategy and show that the growth of the 
naive tumor cell population is successfully declined. 

mailto:dumitru@cankaya.edu.tr
mailto:defterli@cankaya.edu.tr
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Fig 1: The growth of immune and tumor cell population derived by the three different fractional models with α = 0.9. [4] 

In the papers [6, 7], we study a deterministic mathematical model from epidemiology which is about anticipating 
the influence of temperature on dengue transmission incorporating temperature-dependent model parameters. 
This model is investigated within different definitions of fractional operators such as Caputo and Mittag-Leffler 
and numerical simulations are obtained by two different numerical schemes for various fractional orders 
comparatively. 
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Fig. 2: The growth of the naive tumor cell population derived by three different fractional models and integer model vs 
the real data of tumor growth used by [5] 

Regarding the scientific activities of our team (D. Baleanu (TR-MC Member) and O.Defterli (TR-MC 
Substitute)), we listed in below the related national scientific projects, organized scientific events and STSM 
that are performed in the name of the COST Action CA 15225: 

Related National Projects 

• Title “Fractional Dynamical Models and Their Applications”- Grant No: TUBITAK TBAG 117F473 
(Duration: April 2018-October 2020) Proposers: D. Baleanu(TR), O. Defterli(TR).Granted by 
Scientific and Technological Research Council of Turkey(TUBITAK) - with budget 117525TL. 

Organized International Events 

• COST CA15225 – Training School – Advantages of the fractional models in dealing with real world 
problems Link: (https://fractional-systems.eu/ts-2018/) 

The five-day Training school that took place in the Istanbul Gelisim University, Istanbul, Turkey and 
was organized by Dumitru Baleanu brought together top international specialists from diverse countries 
(members of our COST Action) and through active participation of the Trainees also initiated fruitful 
collaboration in the field of fractional dynamics focusing on finding new analytical and numerical 
methods as well as techniques to model the complexity of the dynamics of some real-world systems. 
There were 139 applications to be a Trainee and 20 Trainers at the Training School. The Training School 
was providing proves on the advantage of using models based on fractional calculus, contributed to the 
identification of the unknown phenomena and the stability of the fractional tumor models. New software 
for solving fractional differential equations and fractional discrete equations was provided. Furthemore, 
the discussion on optimal control theory took place providing a powerful tool to link biological, 
mechanical or physical requirements coming from the system under investigation to the required 
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mathematical objectives. With the help of a very recently established fractional derivative the working 
plan for example control problems were designed. 

• International Conference on Computational Methods in Applied Sciences, IC2MAS2019, Istanbul, 
Turkey; Organizing a special session entitled ”Fractional BIO-MATH” with Chair Ozlem Defterli and 
dedicated to COST CA 1525. Link: (https://ntmsci.com/Conferences/ICCMAS19/Announcements). 

In this special session, new studies on the analysis and modeling of biological processes having complex 
dynamics were discussed with the help of classical and newly proposed fractional operators. There were 
4 main plenary lecturers and 25 participants. The applications in different sub-branches of biology were 
discussed within interdisciplinary relations. In this respect, the performance of fractional derivative and 
integral operators with classical derivative and integral operators were compared through some 
important new applications on real world biological problems. New developments in the related field 
were discussed. 

STSM Activities 

• COST CA 15225 – STSM (Short Term Scientific Meeting) between Cankaya University-Turkey and 
(Host) Bialystok Technical University-Poland, 12 - 17 March 2018. 

Title: Modelling cancer tumors by fractional calculus Duration: 12 - 17 March 2018 Visitor: Dr. 
Dumitru Baleanu (MC Member-TR) Host: Dr. Dorota Mozyrska (MC Member-PL) 

The purpose of the STSM was to bring together participating top international COST members 
specialists from Turkey (Dumitru Baleanu, Cankaya University) and Poland (Dorota Mozyrska and her 
team, Bialystok University of Technology, Poland) and to developed fruitful collaborations in the field 
of fractional dynamics focusing on finding new analytical and numerical methods as well as techniques 
to model the complexity of the dynamics of cancer tumours. On March 15th, 2018, Dumitru Baleanu 
has presented a general seminar entitled “Fractional calculus with applications: 50 years of Caputo 
derivative and the Faculty members were the audience. As a result of this STSM a common published 
paper (DOI:10.1063/1.5096159) was reported. 

• COST CA 15225 – STSM (Short Term Scientific Meeting) between Cankaya University-Turkey and 
(Host) Ghent University-Belgium. 

Title: “New Perspectives in Computational Biology with Applications in Cancer Research” Duration: 
31.01.2020-07.02. 2020 

Visitor: Dr. Ozlem Defterli (MC Substitute-TR) Host: Dr. Dana Copot (MC Member-BE)-Dynamical 
Systems and Control (DYSC) Research Group in Department of EMMCS, University of Ghent, Ghent- 
Belgium. 

Dr. Dana Copot’s (Belgium-MC Substitute) research team with two Master and Ph.D. students and 
Department members were the audience of the two lectures given by Dr. Ozlem Defterli (Turkey-MC 
Substitute). Dr. Ozlem Defterli presented the following seminars/lectures during the STSM activity at 
Ghent University: 

Seminar I: ”New Perspectives in Computational Biology with Applications in Cancer Research-PART 
I” Date&Time: 05.02.2020, Wednesday, 10:00 am 

Seminar II: ”New Perspectives in Computational Biology with Applications in Cancer Research-PART 
II” Date&Time: 07.02.2020, Friday, 10:00 am Place: UGent-EMMCS-DYSC, Campus Ardoyen, 
Technologiepark 125, 2nd floor, 9052 Zwijnaarde. 
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Interaction and exchange of research ideas was made on the topic of cancer research, tumor-growth 
within two research groups, organization of common scientific events is planned in the near future. 

Acknowledgement– This work is based upon work from COST Action CA15225, a network supported by 
COST (European Cooperation in Science and Technology). 
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Abstract: Matlab is one of the leading environments for performing scientific calculations, used by scientists in 
many fields, especially in engineering for the control system design. For this reason it appears natural that most 
of the numerical methods studied and devised in the frame of this Cost Action are implemented in Matlab 
toolboxes. The creation of Matlab toolboxes, an activity of the Task 1.5 “Development of toolboxes for 
MATLAB” is therefore the obvious consequence of the Task 1.4. Matlab, as well as any other program language 
or scientific package, does not provide any facility for solving fractional-order problems, thus the outcomes of 
this Task are expected to be of great help for the scientific community involved in the simulation of fractional-
order model. All the codes realized in this task are made freely available to the whole community since they are 
uploaded on the website MATLAB Central File Exchange maintained by MathWorks, Inc., the makers of 
MATLAB, thus ensuring large accessibility. 

Keywords: Fractional differential equations, numerical methods, matlab codes. 

Extended Abstract 

The development of accurate and reliable numerical methods for solving fractional differential equations and 
related problems is not always sufficient to allow non specialists to simulate, in a reliable and efficient way, 
systems described by means of fractional-order operators. 

The implementation of numerical methods for fractional-order problems, even when described with great details 
in the scientific literature, is indeed not always simple and must take into account a number of factors such as 
the dependence on the fractional order, the need of treating in reasonably fast way the memory term and others. 

Unfortunately, unlike ordinary differential equations for which several built-in functions are available, the main 
scientific packages and the main programming languages do not provide any kind of support for fractional-
order problems. In most cases, researchers with a not specific expertise in programming numerical codes have 
to be involved, with great difficulties, in writing by themselves codes for checking results and correctness of 
their models. 

For these reasons, one of the main activities of the Cost Action, planned in the Task 1.5 “Development of 
toolboxes for MATLAB”, has been the creation of a set of specific Matlab codes for solving a series of fractional-
order problems with the aim of making them available to the whole scientific community. 

The codes have been uploaded in the official Mathworks repository which can be easily accessed from any user; 
their download and use is free for anyone. 

The choice of Matlab as programming language is related to the fact that this language is one of the leading 
environments for performing scientific calculations and it is also widely used for control system design, one of 
the main topic of this Cost Action. The translation in other programming languages, or codes for other platforms, 
is however possible and has been already done (in some limited cases) from researchers outside the Cost Action. 

The main features of all codes specifically developed for fractional-order problems in the framework of this 
Cost Action task are the following 

• generality: they solve not just a single or specific equation but an as wider as possible class of problems; 
• easy-to-use: the interface of these codes is in most cases the same interface of similar codes for integer-

order problems that Matlab users are used to; 
• reliability: codes provide accurate results and it is allowed to users with more expertise to take under 

control the desired accuracy by properly setting specific parameters. 
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All these Matlab codes can be freely downloaded from 

https://www.mathworks.com/matlabcentral/profile/authors/2361481 

Here follows a short description of each code and of the problems which they solve. 

Predictor-corrector PECE method for fractional differential equation 

This code solves initial value problems for fractional differential equations according to the method first 
introduced in [1, 2] and based on a couple of explicit and implicit Adams-Bashforth-Moulton methods obtained 
from product integration rules (see also [3]). 

In order to allow a fast execution, and avoid the long time execution required by the persistent memory, the 
FFT algorithm described in [4] is implemented. 

The use of this code follows a syntax similar to other built-in Matlab codes for solving integer-order differential 
equations. 

 

Product integration for multi-term fractional differential equations (MFDEs) 

This code solves multi-term fractional differential equations (MFDEs) with a linear or a nonlinear term 

1 1
1 1( ) ( ) ... ( ) ( , ( ))    −

−+ + =Q Q
Q QD y t D y t D y t f t y t  

by means of a product-integration rule of implicit type. A description of the code is available in [5]. Also in this 
case the efficient treatment of the memory term is assured by the FFT algorithm. 

The syntax for the call of this Matlab code follows the particular nature of the problem at hand 

Solution of fractional delay differential equations (FDDEs) 

The code solves fractional delay differential equations (FDDEs) with one constant delay of linear and nonlinear 
type 

C
0 0 0( ) ( , ( ), ( ), ( ) ( ) [ , ]   = − =  −D y t g t y t y t y t t t t t  

https://www.mathworks.com/matlabcentral/profile/authors/2361481
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by means of the first-order product-integration rule described in [6], where the effects of initial conditions have 
been studied. 

The description of the main parameters of the code is the following. 

 

Evaluation of the Mittag-Leffler function 

This code evaluates the Mittag-Leffler function 
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for any (possible complex) argument z and for any α > 0 and β. It is used an algorithm previously discussed in 
[7] and based on quadrature rules applied to the integral formulation obtained from the inversion of the 
Laplace transform 
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where C is a parabolic contour in the complex plane suitably chosen to obtain high accuracy in a fast way. 

The Mittag-Leffler function plays an important role in the solution of fractional differential equations and in the 
analysis of their stability properties [8]. Although, its importance in fractional calculus, non specific codes for 
the evaluation of this function were available in the main programming languages. 

The function is able to compute the Mittag-Leffler function with 3 parameters (also known as the Prabhakar 
function) 
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but just for a restricted range of arguments and parameters. 

The use of this code is dictated by its parameters and follows the following syntax. 

 

The argument z must be a scalar (real or complex) or a vector (in the last case the code returns a vector with the 
values of the Mittag-Leffler function in each entry of the vector). It has been however released a further code 
for the evaluation of the Mittag-Leffler function with matrix arguments 



73 

 

,
0

1 1( )
( ) ( ) 
  




=

= 
  + k n n

k
E A A A C

k
 

whose use is similar to the code for the scalar case (except for the fact that the argument can be any square 
matrix). 

 

By means of the the matrix Mittag-Leffler function it is possible to solve directly linear systems of fractional 
differential equations or develop more efficient methods for general systems of fractional differential equations. 
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Derivatives 

Harry Esmonde†, Sverre Holm‡ 
†Dublin City University, Dublin, Ireland, harry.esmonde@dcu.ie 

‡University of Oslo, Oslo, Norway 
 

Introduction 

The dynamic behaviour of systems can be represented in terms of magnitude and phase values using frequency 
response functions.  Systems that display a constant phase that is not an integer multiple of p/2 over large 
bandwidths imply fractional derivative behaviour [1]. In this abstract a new technique is used to formulate 
fractional models of time-varying systems based on an understanding of the pre and post transformation states. 
As an example, the dynamic response of adhesive during cure is examined using squeeze film rheometry [2]. 

Theory 

To begin the analysis an assumption is made on the structure of the material at the start and end of the phase 
transition.  In Figure 1 a material is assumed to have the properties of a Newtonian fluid initially with viscosity 
𝜂0 and after transition to have the properties of an elastic solid with stiffness 𝐸1. The complex modulus G(s) for 
the system in transition varies as 𝐺(𝑠):  𝑠 𝜂0 →  𝐸1. 

For most material phase changes the transition takes a finite amount of time and therefore there will be 
interstitial stages during the process. One way of determining the state of the material during transition is to 
formulate a transition function 𝐻𝑇(𝑠) and then multiply the initial modulus by fractional powers of this function.  
The transition function is obtained by formulating the ratio of the final state to the initial state.  In the case of 
the system in Figure 1 this is 

 𝐻𝑇(𝑠) =  
𝐸1

𝑠 𝜂0
    (1) 

If the transition has progressed by a fraction β (0 ≤ β ≤ 1), then the state of the material is given by the complex 
modulus Gβ(s) 

 Gβ(s) = [HT(s)]β s η0 = [
E1

s η0
]

β
 s η0 = E1

β(s η0)1−β  (2) 

The value of 𝛽 will vary as time progresses starting at 0 and eventually reaching 1 when full transition has 
occurred.  Between these values the fractional value will give rise to fractional derivative behaviour since the 
Laplace operator is raised to a fractional power [3].   

 

Figure 1 Material transition model 
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For this technique to be relevant there has to be a phase change in the system, in other words a change in the 
ratio of real to imaginary components in the complex modulus.  This will obviously be the case for a curing 
adhesive, but the technique could be applied to any system described by a changing complex parameter. 
 
To use the procedure outlined above, an appropriate choice of start and finish structure is required. This is done 
by examining the dynamic modulus of the material at the start of transition and at the end. For a methacrylate 
adhesive a Maxwell system is chosen for the initial configuration while a standard linear solid (SLS) model is 
selected for the end state.  Thus, the adhesive curing process can be regarded as a transition from a Maxwell to 
a SLS system, see Figure 2 

 

Figure 2 Methacrylate adhesive curing model 
 
The complex modulus of the liquid 𝐺𝐿(𝑠) at the start is 
 
 GL(s) =

E0η0s

E0+η0s
 (3) 

 
The complex modulus of the solid Gs(s) at full cure is 
 
        Gs(s) =

E2(E1+η1s)

E2+E1+η1s
  (4) 

The transition from liquid to solid can then be described using a transition function as 
 
                      HT(s) =

Gs(s)

GL(s)
=

E2(E1+η1s)(E0+η0s)

(E2+E1+η1s)E0η0s
   (5) 

 
The complex modulus of the intermediate state Gβ(s) as the transition progresses can be described by 
 

 Gβ(s) = [
Gs(s)

GL(s)
]

β
GL(s) = [Gs(s)]β[GL(s)]1−β                           (6) 

 

 

Testing and Results 

Testing of the adhesive was performed using a squeeze film rheometer using 25mm diameter parallel steel plates 
with a bond gap of 100mm.  The magnitude and phase responses of the adhesive were recorded at 0, 20, 40 and 
60 minutes and are shown below, along with simulated values for the fractional model based on Equation 6. 
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Figure 3  Magnitude and phase plots of methacrylate adhesive as cure progresses 
 

Table I Parameter values for curing plots in Figure 3 
Cure time 0 mins 20 mins 40 mins 60 mins 
E0  [Pa] 72.4 70.0 38.1 42.6 
η0   [Pas] 0.098 0.229 0.384 0.001 
E1   [Pa]    4.16 4.03 
η1  [Pas] 0.777 2.14 2.19 9.79 
E2   [Pa] 48.0 33.3 9.79 15.9 
  𝛽 0.682 0.581 0.673 0.912 
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The spectra obtained are based on single spectra at each time period since ensemble averaging is not 
appropriate for systems that are time varying.  However, the results are relatively noise free with a good 
fit at all times indicating the suitability of the modelling technique. 

From Table I, E1 = 0 at 0 and 20 minutes indicating that the curing process at these times is best modelled 
as a transition from one Maxwell system to another. The general characteristic at these times is one of a 
Maxwell system with high stiffness and low viscosity moving towards a system with lower stiffness and 
higher viscosity.  This can be understood by considering the polymerisation process where polymer 
chains lengthen rather than crosslink, lowering the stiffness while at the same time reducing the free 
space in the matrix thereby increasing the shear stress and the effective viscosity. 

At 40 and 60 minutes E1 ≠ 0 and the cure is modelled by a transition from a Maxwell to a SLS system 
and the magnitude plots show non-zero values at 0 rad/s indicating that solid-like behaviour is present.  
At 60 minutes the value for 𝛽 is greater than 0.9 indicating that the solidification has occurred to a large 
extent.  Depending on the type of adhesive and the curing conditions 𝛽 may not necessarily attain a 
value of unity. It is at the later stage of cure that the methacrylate adhesive exhibits a flat phase readily 
associated with fractional derivative behaviour. 

Conclusion 

The complex modulus of curing adhesive can be described using a fractional derivative model. The 
principal novelty in this paper lies in a systematic approach that allows one to develop a fractional 
derivative model from the basis of well-understood standard integer order models and in turn allows for 
a physical understanding of the curing process.   

The fractional power will depend on how the system is restructuring and the stage of the restructuring 
and is therefore dependent on topology and time. The method used to establish the fractional model is 
capable of accurately predicting both the amplitude and phase behaviour of phase transition and should 
be an appropriate method for modelling change of complex modulus in any process that does not exhibit 
instantaneous phase change. 

The methodology consists of three steps as follows: 

1. Choose complex models for the start and end points of the transition that are based on standard 
models of integer powers in 𝑠. 

2. Formulate the transition function based on these boundary models. 
3. Calculate the interstitial states of the complex modulus by multiplying the initial state by a 

fractional power of the transition function. 
 

Acknowledgement‒This article is based upon work from COST Action CA15225, a network 
supported by COST (European Cooperation in Science and Technology). 

 

References 

[1] Mainardi F., “Fractional Calculus and Waves in Linear Viscoelasticity”, Imp. College Press 
(2010) 

[2] Esmonde H., Holm S., “Fractional derivative modelling of adhesive cure”, Applied 
Mathematical Modelling 77(2) (2020) 

[3] Magin R., OrtigueiraM. D., Podlubny I., Trujillo J., “On the Fractional Signals and 
Systems”, Signal Processing 91, 350-371 (2011) 

  



78 

 

A Note on Optimal Discretization of Fractional Order Filter Functions 
Ozlem Imik†, Baris Baykant Alagoz†, Abdullah Ates†, Celaleddin Yeroglu† 
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Abstract: As a result of ongoing progresses in digital microelectronics technology, digital systems have 
played a central role in day life. Therefore, the digital filter design and implementation have turned into 
a central topic of signal processing. The discrete-time filter functions have been widely utilized in 
implementation and simulation of the linear time invariant (LTI) system models. For implementation of 
fractional order filter functions in digital systems, discrete filter functions, which approximate to the 
frequency response of fractional order transfer functions, are widely used. A major problem, which 
arises in this digital filter realization, is the frequency response matching performance and the stability 
of the resulting digital filters. This extended abstract presents a brief review of the book chapter that 
addresses the problem of optimal and stable IIR filter implementation of fractional order filter functions. 
In the study, an optimization problem is introduced to find out the optimal coefficients of a stable IIR 
filter function, where the amplitude response of IIR filter function approximates the amplitude response 
of original fractional order filter function in an operating frequency range. The finding of this study may 
contribute to the solution of optimality and stability problems of discrete realization of fractional order 
filter functions. 

Extended Abstract 

This extended abstract presents an optimal implementation method for fractional order filters in the form 
of stable IIR filters. The discussion in this paper was originally published in a book chapter with the title 
of Mathematical Methods in Engineering [2]. This chapter contributes to research works related Task 
1.7 of Cost Action CA15225 that is "Investigation of preservation of properties of non-integer order 
control and dynamical systems, characterizations and algorithms under discretization" [1]. Due to 
obtaining improved frequency selectivity by using fractional order filter function, fractional order filter 
functions have been implemented in digital systems [3].    

In general, filters are used to obtain desired frequency selectivity by configuring amplitude response of 
filters. They are mainly designed by shaping three types of characteristic regions that are pass bands, 
stop bands and transition bands. Mainly, stop bands are configured to reject frequency components of 
undesired signal from the original information signal. Stop band performance of filters is particularly 
important for signal filtering applications for instance noise signals and harmonic distortions etc. 

We focused on the design problem of the stable IIR discrete filter that represents frequency selectivity 
properties of fractional-order filters, particularly at stop bands [2]. Many analytical discretization 
methods do not ensure stability of resulting IIR filters, and unstable filter solutions are commonly useless 
in practice. To deal with the stability problem in filter discretization and improve amplitude response 
fitting to fractional-order filter in desired frequency ranges, heuristic optimization method have been 
utilized [2]: The PSO algorithm was modified to obtain stable IIR filter coefficients that are 
approximating to amplitude responses of fractional-order continuous filter functions. During PSO 
optimization, the stability of resulting IIR discrete filters is guaranteed by setting very high cost values 
to the solution particles that result in unstable IIR discrete filter solutions [2]. Thus, solution particles in 
the swarm are forced to move towards search regions, where stable IIR filter solutions can exist. 
Illustrative design examples are shown to evaluate performance of the proposed method and results are 
compared with the results of CFE approximation method. 

Let’s assume that the fractional-order continuous LTI filters can be written by 
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By considering sα=(jω)α=ωα(cos(απ/2)+jsin(απ/2)), the amplitude response of fractional-order filters are 
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where filter coefficients are denoted by {ci, di} and fractional orders are represented by the parameters 
{βi, αi} that are real numbers [2]. This provides more options in frequency selectivity for filter functions 
compared to integer order counterparts that allow only integer numbers for the order parameters [2]. For 
digital realization of the amplitude response of fractional filters, one needs the discretization of filter 
function. In this study, an optimization problem is defined to perform approximation of amplitude 
responses of an initial randomly generated discrete IIR filter solution set to amplitude response of the 
continuous fractional-order filter function Fc(s). The discrete IIR filter Fd(s) to implement Fc(s) function 
is expressed in general form as 
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This optimization function is defined as: 
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where a=[a0 a1 a2 a3 ... al] and b=[b0 b1 b2 b3 ... bp] are IIR filter coefficients to be optimized in the 
sampled frequency range ωi ϵ (ωmin, ωmax), i=1, 2, 3, ... L. To calculate Eq. 4, a z=ejωTs mapping is used 
in Eq. 3. Parameter Ts denotes the sampling period of the discrete filter. 
This optimization problem is solved by the PSO algorithm. Positions of solution particles in the 
coefficient search space are expressed as [2] 

]......[ 32103210 lpn aaaaabbbbbx = . (5) 

Particles of PSO move in the search space of filter coefficients. Positions of each particle represent IIR 
filter solutions in the search space. During the optimization process of PSO algorithm, particles move 
to minimize the objective function (Eq. 4).  A decrease in values of objective functions infers better 
approximation of amplitude response of Fd(s) filter function to amplitude response of Fc(s) filter 
function. The following two assets are utilized in design of  this objective function for filter application: 
 

(i) Similarity of amplitude response is expressed by mean square of amplitude response difference in 
logarithmic scale. 
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(ii) Stability prevention is accomplished by assigning high value to the objective function in case of the 
existence of unstable filter solution: To achieve the stability of IIR filters, we set a very high cost value 
(fmax) to the objective function for particle solutions if they result in unstable IIR filter solutions. The 
objective function with this stability constraint can be expressed as 
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Here, very high value setting to fmax leads to keeping particles away from the region of search space 
where unstable filter solutions are emerged [2,3]. This enforces particles to search for stable IIR filter 
solutions. Steps of the proposed PSO algorithm can be summarized as follows, 
Step 1: Set initial values to position and velocity of particles randomly.  
Step 2: Find the local best and global best positions according to objective function (Eq. 6).  
Step 3: Update particle positions according to the position and velocity update procedure of PSO, and 
determine local best and global best positions by the objective function (Eq. 6). 
Step 4: If the maximum number of iterations is reached, stop the optimization. Otherwise, go to Step 3. 

For an illustrative fractional order filter discretization, we designed a stable IIR filter that can 
approximate to the continuous fractional-order Chebyshev low pass filters [4]  
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for α = 0.2, a0 = 3, a1 = 3 and a2 = 5. After 1000 iteration, the optimized IIR filter function was obtained 
as 
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The IIR filter function, that was obtained by CFE+Tustin method, is found 
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Fig. 1 shows evolution of the objective function value during optimization by using the PSO algorithm. 
The figure indicates the convergence of the optimization process.  Fig. 2 compares the amplitude 
responses of continuous fractional-order filter function Fc2(s), the proposed IIR filter function Fd2(s), the 
continuous integer order filter function approximation by CFE method and the discrete IIR filter function 
approximation by CFE with Tustin method. As seen in figures, the proposed PSO algorithm yields better 
approximation at stop band of the fractional-order filter function. However, the CFE method can provide 
superior approximation at low frequency regions. Table 1 lists Mean square error performance of the 
proposed discrete filter designs by PSO and the filter by using CFE+Tustin method. Fig. 3 shows time 
response of discrete Fd2(s) and Fcfe2(s) filter functions for sinusoidal input signal (sin(40t)). Results 
reveal that Fcfe2(s) filter is not stable because CFE method does not ensure the stability of resulting filters. 
The proposed method performs in the search space that results in stable filters and this is an important 
advantage for stable discrete filter implementations [2].  
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Table 1 Mean squared errors for amplitude responses of IIR filter designs [2] 

IIR Filter Design Methods Mean Squared Errors 
PSO  0.2627 
CFE+Tustin discretization 76.2223 

 

 
Fig. 1 The objective function values during the optimization of the filter coefficients [2] 

 

Fig. 2 Comparison of amplitude responses of original fractional-order filter, the IIR filter 
implementation by using PSO, the continuous integer order filter approximation by CFE and the discrete 
IIR filter function approximation by CFE+Tustin methods [2] 
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Fig. 3 Time response of discrete filter functions for sinusoidal input signal [2] 
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Jaroslav Koton†, David Kubanek†, Peter. A Ushakov‡, Kirill Olegovich Maksimov‡ 

†Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 616 
00, Brno, Czech Republic 

‡Faculty of Instrumentation Engineering, Kalashnikov Izhevsk State Technical University, Studencheskaya 7, 
426 069, Izhevsk, Russian Federation 

 

Abstract: While designing fractional-order analog signal processing blocks, a discrete Fractional-Order 
Element (FOE) introducing the fractional feature of the final function block is required. In the open 
literature, the FOEs may also be referred to as Elements with Fractional-Order Impedance (EFI), 
Constant-Phase Elements (CPE), or simply Fractors [1].  

A recent summary [2] shows a number of prospective technologies being investigated to introduce 
capacitive FOEs. One of these prospective design technologies, that was further investigated with the 
COST Action CA15225 is the design based on the using homogenous distributed resistive-capacitive 
(RC) structures (lines). A software tool was designed suitable for the synthesis of capacitive FOEs as 
we described in [3], whereas using a thick-film technology discrete FOEs were also experimentally 
implemented. 

Keywords: solid-state fractional-order element; RC network with distributed parameters; thick-film 
technology 

Extended abstract 

The relation between cross voltage and through current of capacitive and inductive FOE (FO capacitor 
and FO inductor) can be represented by fractional differentiation as follows [4]: 
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where α and β are the fractional orders of the fractional capacitor and inductor in the range (0; 1), 
respectively. By Laplace transformation of (1) and (2), the impedance of these elements have the form: 

 1( )
 



=CZ s
s C

,  (3) 

 ( )



=LZ s s L , (4) 

where s is the Laplace operator (complex frequency), the constants Сα and Lβ are also referred to as 
pseudo-capacitance and pseudo-inductance having units Fsα−1 and Hsβ−1, respectively. Substituting 
s = jω into (3) and (4) we may observe that the phase of the impedance of FO capacitor equals −απ/2, 
whereas the phase of the impedance of FO inductor equals βπ/2. Hence, the phase of FOE is constant 
and independent of frequency. 

While designing classic (integer-order) analog circuits, capacitors are commonly preferred to inductors. 
Similarly, more attention is also given to FO capacitors than FO inductors, as it can also be seen from 
the survey [2]. Therefore, within our research activities we also focused on the design of capacitive 
FOEs by taking advantage of resistive-capacitive (RC) circuits with distributed parameters. 
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The idea of realizing impedances with given characteristics by RC circuits with distributed parameters 
started to be discussed already more than 60 years ago, see e.g. [5], [6]. Here, the synthesis methods 
were based on utilizing homogenous RC lines of the form R-C-0 (resistor-capacitor-conductor). Based 
on our further analyses in this area (see e.g. [7], [8], [9]), the R-C-NR layer structure shows to be very 
suitable for efficient design of FOEs. Such structure contains two resistive layers with resistances R and 
N·R, and one capacitive (dielectric) layer with capacitance C between these two resistive layers. The 
resistive layers are bonded and hence the R-C-NR structure represents a 4-terminal circuit as shown in 
Fig. 1. 

 

        
 (a) (b) 

Figure 1: (a) The 3D view of R-C-NR structure, (b) its equivalent schematic 

 

To achieve fractional order of the designed FOEs different to the value of 0.5, we have developed a 
structural-parametric synthesis method of FOE, which is in detail described in [3]. The design tool 
employing genetic algorithms assumes four four-terminal R-C-NR structures-sections and as an output 
it provides the interconnection of individual sections (Fig. 2), defines their geometry, i.e. their lengths 
L (relative to unity width W = 1), layer resistivity R, layer capacitance C, and the ratio of the resistivity 
of the top and bottom resistive layers N to provide at the input an impedance ZIN with required phase 
shift in the required frequency band. 
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NR
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NR
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C R

NR
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C

Specific interconnection of 4 R-C-NR sectionsZIN

 

Figure 2: Simplified view on the result of the design tool specifying the parameters of individual R-C-
NR sections and their interconnection 

 

To show and validate the possibilities of FOE design based on the approach of RC circuits with 
distributed parameters, using the outputs of the design tool FOEs were experimentally implemented 
using the thick-film technology [10], [11]. In Fig. 3, the top view on the realized capacitive FOE is 
shown, where the individual R-C-NR sections can also be identified. This capacitive FOE is primarily 
characteristic with its fractional order α = 0.45 and pseudo-capacitance Cα = 120 nFs-0.55 (Fig. 4), and is 
being labeled as capFOE_045. The fractional feature (the constant phase region) in the frequency band 
from 8 kHz to 4 MHz. The dimension of the designed capFOE_045 is 42 mm × 13 mm (excluding pins). 
The overview of other main parameters of the capFOE_045 is listed in Table 1. 
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Figure 3: A sample of capacitive FOE designed in thick-film technology 

 

   
 (a) (b) 

Figure 4: Impedance magnitude and phase of capFOE_45 (26 samples measured) 

Table 1: Electrical characteristics of capFOE_045 

Parameter Symbol Min Typ Max Unit 
Fractional order  α 0.44 0.45 0.49 - 
Fractance Cα 68 120 142 nFs-0.55 
Min. frequency of operation fmin  8  kHz 
Max. frequency of operation fmax  4  MHz 
Impedance magnitude1   15.2  kΩ 
Impedance phase1   -40.6  deg 
Max. absolute error in impedance magnitude1    3.2 kΩ 
Max. absolute error in impedance phase1    3.5 deg 
Max. relative error in impedance magnitude1    21 % 
Max. relative error in impedance phase1    8.6 % 

1at central frequency 180 kHz 

Conclusion and Future Work 

The design of capacitive FOEs as solid-state elements using the theory of RC circuits with distributed 
parameters shows to be feasible. So far, the thick-film technology was used for experimental realization. 
However, based on our preliminary analyses, the think-film technology may also be used. For this 
purpose, the technology process needs further investigation to be able to implement the individual layers 
with specific parameters (resistivity and capacitance). 
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Approximation of fractional-order blocks 
Guido Maione 

Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona 4, 70125, Bari, Italy 
 

Abstract: Fractional-order systems and controllers are based on irrational operators or transfer functions 
that require an approximation by rational transfer functions. Namely, the approximation allows 
realization of such fractional-order elements. This extended abstract synthesizes some results that were 
obtained, in the period of the COST Action CA15225, namely suitable and efficient approximation 
methods. Remarkable results regard the symmetry of the zero-pole patterns in discretization of the 
fractional-order Tustin operator and the simple second-order realization of a fractional-order lead 
compensator. The links established with researchers from countries in the COST Action made some of 
these results possible. 

Keywords: fractional-order operator; approximation; fractional-order lead compensator. 

Extended abstract 

This abstract describes some results useful to approximate irrational fractional-order operators that can 
be used as building blocks of many fractional-order systems and controllers. Other illustrated results 
allow to approximate the irrational transfer function of a fractional-order lead compensator that is the 
basic element of a recently introduced class of controllers. 

Many fractional-order circuits and systems, and fractional-order controllers, are based on a fractional-
order operator (or basic block) that is the irrational differentiator or integrator 𝑠𝜈, with 𝜈 > 0 
(differentiator) or 𝜈 < 0 (integrator). This operator as well as other irrational fractional-order blocks 
require an approximation specified by a rational transfer function (also named the “approximant”) in a 
frequency range of interest. The approximant must enjoy stability and minimum-phase properties, i.e. 
its poles and zeros must lie in the left-half of the Gauss plane (analog realization) or inside the unit circle 
(discrete realization). Moreover, if poles and zeros are simple and alternate on the negative real half-
axis, thus enjoying the “interlacing” property, the approximant is a positive real function [1] and 𝑠𝜈 can 
be realized by a network with linear and passive elements only [2]. 

Truncation of Continued Fraction Expansions (CFEs) is very useful because it can directly establish the 
values of the electrical elements of analog circuit realizations. The main realizations use simple passive 
impedances referring to truncated CFEs of Stieltjes’s type (S-CFEs). Positive signs of the constants in 
the partial denominators of S-CFEs are conditions to guarantee stable and minimum-phase realizations 
with real zeros interlacing real poles. These properties of the truncated S-CFEs with positive coefficients 
are classical in analog and discrete realizations. 

The literature offers many other CFEs for approximating 𝑠𝜈 and the digital counterpart, some of which 
maintain the stability, minimum-phase, and interlacing properties. However, there was no rigorous and 
complete proof that these CFEs enjoy such properties for any 𝜈, with 0 < 𝜈 < 1, and for any degree 𝑛 
of the numerator and denominator polynomials in the rational transfer function. Moreover, there exist 
no direct formulas to convert other forms of CFEs into S-CFEs. Hence, it is impossible to use a direct 
conversion as a means to determine the zeros and poles of a given truncated CFE. 

In [3], the classical Lagrange’s CFE (L-CFE) 

 (1 + 𝑥)𝜈 = 1 +
𝑎1 𝑥

1+
𝑎2 𝑥

1+
𝑎3 𝑥
1+⋯

, (1) 
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with 𝑎1 = 𝜈, 𝑎𝑗 =
𝑖−𝜈

2 (2𝑖−1)
, 𝑎𝑗+1 =

𝑖+𝜈

2 (2𝑖+1)
, 𝑗 = 2𝑖, 𝑖 ≥ 1, is revisited as a S-CFE, namely it holds 𝑎1 >

0, 𝑎𝑗 > 0, 𝑎𝑗+1 > 0. Then, any CFE equivalent to (1) is an S-CFE. Moreover, truncation of (1) provides 
the approximation which can be reduced to a rational transfer function 

 𝐺𝑛(𝑥) =
𝛼𝑛,0 𝑥𝑛+𝛼𝑛,1 𝑥𝑛−1+𝛼𝑛,2 𝑥𝑛−2+⋯+𝛼𝑛,𝑛−2 𝑥2+𝛼𝑛,𝑛−1 𝑥+𝛼𝑛,𝑛

𝛽𝑛,0 𝑥𝑛+𝛽𝑛,1 𝑥𝑛−1+𝛽𝑛,2 𝑥𝑛−2+⋯+𝛽𝑛,𝑛−2 𝑥2+𝛽𝑛,𝑛−1 𝑥+𝛽𝑛,𝑛
, (2) 

where the author showed that coefficients 𝛼’s and 𝛽’s can be computed by closed-form expressions as 
follows: 

 
𝛼𝑛,𝑘 =

(𝑘+1)𝑛

(𝑛−𝑘)!
 (𝑘 + 1 + 𝜈)(𝑛−𝑘)

𝛽𝑛,𝑘 =
(𝑘+1)𝑛

(𝑛−𝑘)!
 (𝑘 + 1 − 𝜈)(𝑛−𝑘)

 (3) 

for 𝑘 = 0, 1, 2, … , 𝑛, where (𝑘 + 1 ± 𝜈)(𝑛−𝑘) = (𝑘 + 1 ± 𝜈)(𝑘 + 2 ± 𝜈) ⋯ (𝑛 ± 𝜈) are Pochhammer 
symbols finishing with (𝑛 + 1 ± 𝜈)(0) = 1 when 𝑘 = 𝑛, and (𝑘 + 1)𝑛 = (𝑘 + 1)(𝑘 + 2)(𝑘 + 2) =
(𝑘+𝑛)!

𝑘!
. 

Then a link between the L-CFE and two classes of CFEs is established, such that the position of poles 
and zeros of the approximants can be determined. Stability, minimum-phase and interlacing between 
stable poles and minimum-phase zeros are proven for any 0 < 𝜈 < 1 and for any value of 𝑛. This result 
is obtained both in the 𝑠-domain (for analog realization), with zero-pole interlacing along the negative 
real half-axis, and in the 𝑧-domain (for discrete realization), in which case real zeros and real poles are 
placed inside the unit circle. Moreover, it is proven that the polynomial coefficients in the discrete 
approximation enjoy such properties that poles and zeros are symmetrical. 

Truncation of (1) to the last partial denominator 𝑎2𝑛 𝑥 and substitution 𝑥 = 𝑠 − 1 provides a first class 
of approximations 

 𝑀𝑛(𝑠) =
𝑝𝑛,0 𝑠𝑛+𝑝𝑛,1 𝑠𝑛−1+𝑝𝑛,2 𝑠𝑛−2+⋯+𝑝𝑛,𝑛−2 𝑠2+𝑝𝑛,𝑛−1 𝑠+𝑝𝑛,𝑛

𝑞𝑛,0 𝑠𝑛+𝑞𝑛,1 𝑠𝑛−1+𝑞𝑛,2 𝑠𝑛−2+⋯+𝑞𝑛,𝑛−2 𝑠2+𝑞𝑛,𝑛−1 𝑠+𝑞𝑛,𝑛
 (4) 

where coefficients 𝑝’s and 𝑞’s can be computed by closed-form expressions given in [4]-[5]. 

Another approximation 

 𝑇𝑛(𝑠) =
𝑝𝑛,0 𝑠𝑛+𝑝𝑛,1 𝑠𝑛−1+𝑝𝑛,2 𝑠𝑛−2+⋯+𝑝𝑛,𝑛−2 𝑠2+𝑝𝑛,𝑛−1 𝑠+𝑝𝑛,𝑛

𝑞𝑛,0 𝑠𝑛+𝑞𝑛,1 𝑠𝑛−1+𝑞𝑛,2 𝑠𝑛−2+⋯+𝑞𝑛,𝑛−2 𝑠2+𝑞𝑛,𝑛−1 𝑠+𝑞𝑛,𝑛

 (5) 

is based on computing 𝜔𝜈 and its first 𝑛 derivatives with respect to 𝜔 in a central point 𝜔0, then 
establishing coincidence of these magnitudes with those given by 𝑇𝑛(𝑠) in the 𝜔-domain. The 
approximation is derived by truncating the CFE 

 𝑑0 +
𝑠−𝜔0

𝑑1+
𝑠−𝜔0

𝑑2+
𝑠−𝜔0
𝑑3+⋯

, (6) 

and stopping at 𝑑2𝑛, where the coefficients are computed as 𝑑0 = 𝜔0
𝜈, 𝑑1 = 𝜔0

1−𝜈/𝜈, 𝑑2𝑖 =
2𝜈(1+𝜈)(2+𝜈)⋯(𝑖−1+𝜈)

(1−𝜈)(2−𝜈)⋯(𝑖−𝜈)
𝜔0

𝜈, 𝑑2𝑖+1 =
(2𝑖+1)(1−𝜈)(2−𝜈)⋯(𝑖−𝜈)

𝜈(1+𝜈)(2+𝜈)⋯(𝑖+𝜈)
𝜔0

1−𝜈. In [3], it is shown that, for 𝜔0 = 1, 

𝑀𝑛(𝑠) = 𝑇𝑛(𝑠), while, for 𝜔0 ≠ 1, 𝜔0
𝜈  𝑀𝑛 (

𝑠

𝜔0
) = 𝑇𝑛(𝑠).  

The main result was proving that numerator and denominator polynomials form a positive pair, i.e. their 
roots are negative real, simple, and alternating along the negative real half-axis. However, considering 
the CFEs leading to 𝑀𝑛(𝑠) and 𝑇𝑛(𝑠), it is hard to reduce them to the S-CFE, determine the coefficients 
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in the S-CFE as nonlinear functions of 𝜈, and find the conditions on 𝜈 to verify positiveness of 
coefficients. Then, the proof given in [2] is based on the relation between the L-CFE and the developed 
approximation, hence between the numerator and denominator of 𝐺𝑛(𝑥) and those of 𝑀𝑛(𝑠) and 𝑇𝑛(𝑠). 
In particular, the zeros (−𝜎𝑖) and poles (−𝜏𝑖) of 𝑀𝑛(𝑠) are related by 𝜎𝑖 = 1/𝜏𝑛−𝑖+1, for 𝑖 = 1, … , 𝑛. 

Another important result in [3] was giving formulas for the coefficients of the approximation in the 
discrete domain and proving that zeros and poles are interlaced inside the unit circle. The approximants 
of the Tustin discrete fractional-order operator are expressed by 

 (
2

𝑇
)

𝜈
𝐻𝑛(𝑧) = (

2

𝑇
)

𝜈 𝑐𝑛,0 𝑧𝑛+𝑐𝑛,1 𝑧𝑛−1+𝑐𝑛,2 𝑧𝑛−2+⋯+𝑐𝑛,𝑛−2 𝑧2+𝑐𝑛,𝑛−1 𝑧+𝑐𝑛,𝑛

𝑑𝑛,0 𝑧𝑛+𝑑𝑛,1 𝑧𝑛−1+𝑑𝑛,2 𝑧𝑛−2+⋯+𝑑𝑛,𝑛−2 𝑧2+𝑑𝑛,𝑛−1 𝑧+𝑑𝑛,𝑛
 (7) 

where 

 
𝑐𝑛,𝑖 = (𝑛 − 𝑖 + 1)𝑛  ∑

(−2)𝑖−𝑗

(𝑖−𝑗)!𝑗!
(2𝑛 − 𝑖 + 1)(𝑗) (𝑛 − 𝑖 + 𝑗 + 1 + 𝜈)(𝑗)

𝑖
𝑗=0

𝑑𝑛,𝑖 = (𝑛 − 𝑖 + 1)𝑛  ∑
(−2)𝑖−𝑗

(𝑖−𝑗)!𝑗!
(2𝑛 − 𝑖 + 1)(𝑗) (𝑛 − 𝑖 + 𝑗 + 1 − 𝜈)(𝑗)

𝑖
𝑗=0

 (8) 

Moreover, it was proven that poles and zeros of 𝐻𝑛(𝑧) are real, strictly interlaced, located between −1 
and +1 in the 𝑧-plane, and enjoy symmetry with respect to the origin. 

An example regarding the approximation of 𝑠0.6 with 𝑛 = 4 is given in Table 1. Zero-pole interlacing 
can be verified in all domains. 

Table 1: Coefficients, zeros, and poles of 𝐺4(𝑥), 𝑀4(𝑠), 𝐻4(𝑧) for 𝜈 = 0.6 

𝐺4(𝑥) 

𝛼4,0 𝛼4,1 𝛼4,2 𝛼4,3 𝛼4,4 Zeros 
68.89 861.12 2980.8 3864 1680 -7.85 -2.32 -1.31 -1.02 
𝛽4,0 𝛽4,1 𝛽4,2 𝛽4,3 𝛽4,4 Poles 
4.57 228.48 1468.8 2856 1680 -42.83 -4.27 -1.76 -1.15 

𝑀4(𝑠) 

𝑝4,0 𝑝4,1 𝑝4,2 𝑝4,3 𝑝4,4 Zeros 
68.89 585.56 810.78 210.20 4.57 -6.85 -1.32 -0.31 -0.02 
𝑞4,0 𝑞4,1 𝑞4,2 𝑞4,3 𝑞4,4 Poles 
4.57 210.20 810.78 585.56 68.89 -41.83 -3.27 -0.76 -0.15 

𝐻4(𝑧) 

𝑐4,0 𝑐4,1 𝑐4,2 𝑐4,3 𝑐4,4 Zeros 
1680 -1008 -1180.8 493.44 88.4736 0.95 -0.75 0.53 -0.14 
𝑑4,0 𝑑4,1 𝑑4,2 𝑑4,3 𝑑4,4 Poles 
1680 1008 -1180.8 -493.44 88.4736 -0.95 0.75 -0.53 0.14 

 

Note that, to perform discretization, one can apply direct or indirect procedures. However, direct 
discretization of the fractional-order Tustin operator may lead to an approximant with coefficients 
having very large or very small values, although interlacing of stable poles and minimum-phase zeros 
is guaranteed [6]-[7]. This is an unfavorable feature because numerical problems can be determined by 
overflow and/or underflow of the floating point representation of the coefficients. 

Then, in [7], the authors proposed an indirect two-steps approach avoiding numerical problems 
determined by the values of the coefficients. Moreover, the approximant coefficients are given by 
closed-form expressions. In the first step of the approach, the fractional binomial function (1 + 𝑥)𝜈 is 
expressed as rational transfer function with coefficients in closed forms. In the second step, the previous 
transfer function is converted to a rational discrete transfer function modeling the fractional-order Tustin 
operator, with coefficients that are also given by formulas in closed form. These expressions enlighten 
the characteristic symmetric zero-pole patterns. To synthesize, the approach makes closed-form 
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formulas available for the coefficients of rational transfer functions representing the basic fractional-
order block, both in the analog and discrete cases. The formulas avoid tedious algebraic operations of 
the indirect approaches and numerical problems. 

For example, the proposed method approximates 𝑠0.5 by a discrete transfer function with 𝑛 = 4 as 
follows: poles are in -0.9397, -0.5, 0.1736, 0.7660; zeros are in -0.7660, -0.1736, 0.5, 0.9397. Symmetry 
is clear. Other band-limited approximations of 𝑠0.5 are compared [7]. The frequency responses are 
shown in Fig. 1. The discretization based on the Tustin operator is affected by large errors in the 
magnitude diagram at high frequencies, while lower errors are obtained by the other schemes. However, 
the phase diagram of the Tustin approximation is much closer to the constant-phase diagram, which is 
very important for robust control. 

 
 (a) (b) 

Figure 1: Frequency response of approximations: (a) magnitude diagram; (b) phase diagram 

 

Another result is the approximation of an irrational fractional-order lead compensator  

 𝐻(𝑠) = (
1 + 𝜏 𝑠

1 + 𝜏 Δ 𝑠
)

𝜈
, (9) 

where 0 < 𝜈 < 1 is the fractional (non-integer) order, 𝜏 > 0, 0 < Δ < 1. Control design is illustrated in 
[8], in which the author also provided the realization method. The starting point is the approximation of 
𝑥𝜈 by a second-order rational transfer function 

 𝑥𝜈 ≈
∑ 𝑏2−𝑖 𝑥𝑖2

𝑖=0

∑ 𝑎2−𝑖 𝑥𝑖2
𝑖=0

, (10) 

where 𝑏2 = 𝑎0 = (1 − 𝜈)(2 − 𝜈), 𝑏1 = 𝑎1 = 2(2 − 𝜈)(2 + 𝜈), and 𝑏0 = 𝑎2 = (1 + 𝜈)(2 + 𝜈). The 
transformation 𝑥 =

1 + 𝜏 𝑠

1 + 𝜏 Δ 𝑠
 converts (10) to the following approximation: 

 (
1 + 𝜏 𝑠

1 + 𝜏 Δ 𝑠
)

𝜈
≈

∑ 𝑏2−𝑖 (1+𝜏 𝑠)𝑖 (1+𝜏 Δ 𝑠)2−𝑖2
𝑖=0

∑ 𝑎2−𝑖 (1+𝜏 𝑠)𝑖 (1+𝜏 Δ 𝑠)2−𝑖2
𝑖=0

, (11) 

which is proved in [8] to be the same as 

 (
1 + 𝜏 𝑠

1 + 𝜏 Δ 𝑠
)

𝜈
≈ 𝐺(𝑠) =

∑ 𝐵2−𝑘 𝑠𝑘2
𝑘=0

∑ 𝐴2−𝑘 𝑠𝑘2
𝑘=0

, (12) 
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with 𝐵2−𝑘 = ∑ 𝑏2−𝑖 𝐿𝑘𝑖
𝐶2

𝑖=0 , 𝐴2−𝑘 = ∑ 𝑎2−𝑖 𝐿𝑘𝑖
𝐶2

𝑖=0 , 𝐿𝑘𝑖
𝐶 = ∑ (

𝑖
𝑗
) (

2 − 𝑖
𝑘 − 𝑗

) Δ𝑘−𝑗 𝜏𝑘𝜇2
𝑗=𝜇1

, 𝜇1 =

max{0, 𝑘 + 𝑖 − 2}, 𝜇2 = min{𝑖, 𝑘}, 𝑘 = 0, 1, 2. Fig. 2 shows the normalized frequency response of the 
irrational compensator in (9) with Δ = 0.1, 𝑢 = 𝜔𝜏 (normalized frequency), and 𝜈 = 0.3, 0.5, 0.7 (solid 
lines) and its second-order approximation (dashed lines). 

 

 

 (a) (b) 
Figure 2: Normalized frequency response of the fractional-order lead compensator 𝐻(𝑠) defined in (9), with 
fractional order 𝜈 = 0.3, 0.5, 0.7, and its approximation 𝐺(𝑠): (a) magnitude diagrams (b) phase diagrams 

Conclusion and Future Work 

Some new methods were proposed for approximation of fractional-order operators and transfer functions 
in both the analog and discrete domain. Suitable closed-form expressions allow computation of the 
coefficients of the approximants. Stability, minimum-phase, and interlacing are guaranteed. Peculiar 
symmetry of zeros and poles of the discrete transfer functions was also obtained. Moreover, a second-
order approximant was obtained for a fractional-order lead compensator. Future work can investigate 
other properties of analog and discrete approximations, for example for high-speed realizations and for 
control of nonlinear systems. 
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Abstract: Fractional-order filtering is currently a well-known technique for deriving filtering transfer 
functions that offer a precise control of a slope of the stop band attenuation, in some cases very low 
cutoff frequencies while using reasonable capacitor values, as well as generation of specific phase shift 
distance between input and output signals [1]. Current research is focused on the investigation of various 
types of transfer functions, approximation methods, usability of many types of active elements within 
the circuit and multifunctionality of designed structure [2-11].  
 
Many of these prospective research topics were investigated within the COST Action CA15225, [2-11], 
for instance. Most of the works are focused on the fractional-order low-pass (FLPF) or high-pass (FHPF) 
transfer functions with order less than two, in [3] for instance. However, also band-pass (FBPF) and 
band-stop (BBSF) responses in fractional-order domain are frequently researched, [8] for example. In 
some cases, even higher-order fractional-order transfer functions are studied, for instance in [10].  
 
Keywords: approximation method; fractional-order filter; fractional order; reconfigurable filter; transfer 
function;  
 
Extended abstract 

Fractional‐order calculus is a very useful tool with many interdisciplinary applications in several areas 
covering electrical engineering, biology and biomedicine, control systems, and signal processing [1]. 
The development of fractional‐order circuits includes filters, oscillators, biological tissue emulators and 
analog controllers, published in [2-14], for instance.  
One of the common methods of obtaining analogue active filter circuits of a fractional-order (1+α), 
where 0 < α < 1, is by replacing the classic capacitor(s) in second-order active filter by the fractional-
order admittance defined as Y = sαC, where s = j is complex variable and C > 0 is a constant often 
referred to as a pseudo-capacitance (Fsα−1). This substitution leads to one of the following types of FLPF 
responses [15]: 

 LP-A
1 1

A1 A2 A3

1( )  + +=
+ +

H s
s K s K K

,  (1)  

 LP-B
1 1

B1 B2 B3

1( ) + +=
+ +

H s
s K sK K

,  (2)  

 
1 2 2

LP-C
1

C1 C2 C3

1( )   + +=
+ +

H s
s K s K K

,  (3)  

where the coefficients KAi, KBi, or KCi, (i = 1, 2, 3) should be calculated in order to obtain the desired 
characteristics (bandwidth, pass-band peaking, etc.). There are usually two capacitors in inductor-less 
integer-order filters (referred to as C1 and C2. Case A (1) represents an example of C1 interchanged by 
fractional-order counterpart, case B (2) is the case when C2 is interchanged and case C (3) is when both 
capacitances are interchanged by fractional-order counterpart. Obtaining the numerical values of these 
fractional-order transfer function coefficients with the format (1) - (3) stem from minimizing the error 
between the fractional-order transfer function and the selected integer-order transfer function with a 
known approximation (Butterworth, Chebyshev, and inverse Chebyshev) or particular value of quality 
factor [15]. 
In some cases, such as audio signals processing, fully-differential (F-D) filtering solutions are beneficial. 
Therefore, these filters are also studied. One example of the designed circuit is shown in Fig. 1 [7]. This 
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particular solution of the filter is multifunctional, i.e. differential FLPF and FBPF are available from the 
same structure without any need to modify it. 
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Figure 1: Designed fully-differential (F-D) filtering solution with multiple transfer functions [7] 

 
The transfer functions in the case when C1 is replaced by fractional-order element (FOE) as follows [7]: 
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K Ks s
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Another approach is represented by a reconfigurable filtering structure, which transfer function can be 
changed without altering the input or output node [10]. These filters are frequently referred to as 
reconnection-less. Example of such a filter is shown in Fig. 2 [10]. 
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Figure 2: Proposed fractional-order multifunctional filtering topology with FLPF and FHPF responses 

in the same topology [10] 
Integer-order transfer function is equal to [10]: 

 LP ( )( )
( )

=
N sH s
D s

,  (6) 

where 
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and 

 

4 3 2
1 2 3 4 2 3 4 1 3 4 1 2

2 2
1 4 2 3 1 2 3 4 2 1 3 4 4 1 2 3

1 2 3 4

( )

.

= + + +

+ + + + +

+

m m m

m m m m m m m m m m

m m m m

D C C C C C C C g C C g g

C C g g C C g g C g g g C g g g
g g g g

s s s s

s s s s  (8) 

Each of the capacitors could be replaced by its fractional-order counterpart. This gradual exchange can 
offer many types of transfer functions in this case: LP 3+α, LP 2+α, LP 1+α, LP 2+α+β, LP 1+α+β, LP 
α+β, LP 1+α+β+γ, LP α+β+γ and LP α+β+γ+δ. 
 
Another example of multifunction and very simple fractional-order filter is shown in Fig. 3 [11]. This 
filtering solution consists of just two PMOS transistors and, therefore, it is MOS only solution. Only 
two more components are required: current source and fractional-order capacitor (FOC). Two voltage 
outputs are available, providing FLPF and FHPF response. 

 
Figure 3: Proposed fractional-order multifunctional filtering topology with FLPF and FHPF responses 

in the same topology [11] 
Transfer functions of this filter are [11]: 
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where gm is the transconductance of both transistors (Mp1 and Mp2).  
 
A fractional-order model that describes the dynamics of a phantom EEG measurement chain, has the 
the form of a high-pass filter with fixed value of the order and variable values of the time-constant and 
maximum gain.  
It is described by the transfer function in (11) 

                                             (11) 
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Figure 4: Fractional-order high-pass filter for phantom electroencephalographic system model 
implementation (a) OTA based topology, (b) layout design [16] 

 
An OTA based implementation is depicted in Figure 4a, while the layout design is given in Figure 4b. 
This filter offers the benefits of the fully electronic adjustment of its frequency characteristics, 
minimization of the values of the required capacitances. These have been  achieved by realizing the 
partial fraction expansion of the transfer function which approximates the Laplacian operator, instead 
of its direct realization [16].  
 
Conclusion and Future Work 

There are many types of filtering transfer functions and their particular implementations as shown briefly 
in this short task summary. Of course, choice of the particular solution is based on final application and 
its specific requirements. Therefore, there is still space for further research and investigation of new 
topologies, approaches and design methods, such as in [2-6] or [9], for instance. 
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Short abstract: Graphomotor disabilities (GD), manifested in e.g. people with neurodegenerative or 
neurodevelopmental disorders, can have serious consequences, and can greatly affect a persons quality 
of life. Although the basic kinematic features such as velocity, acceleration, and jerk were proved to 
effectively quantify GD symptoms, a recent body of research identified that the theory of fractional 
calculus can be used to even improve the objective GD assessment. The aim of this chapter is to 
summarize our current research in this field. The online hand writing signals were parametrized by 
kinematic features utilizing three fractional-order derivatives (FD) approximations: Grünwald-
Letnikovs, Riemann Liouvilles, and Caputos. Our results shows the differences across the employed FD 
approaches for the same kinematic handwriting features and their potential in GD analysis. The results 
suggest that the Riemann-Liouville’s approximation in the field of quantitative GD analysis outperforms 
the other ones. Using this approach, we were able to automatically estimate the severity of the GD with 
16.25% error. Based on the observed results, we suggest the Riemann Liouvilles FD approach as a most 
suitable candidate for a digital filter quantifying the online handwriting associated with GD. 

Keywords: Fractional-order derivatives, online handwriting, neurodegenerative disorders, 
neurodevelopmental disorders, features extraction 

Extended abstract 

Handwriting is a complex perceptual-motor skill composed of a coordinated combination of fine 
graphomotor movements, motor planning and execution, visual perceptual abilities, orthographic 
coding, kinesthetic feedback, and visual-motor coordination [1]. These skills are referred to as 
graphomotor skills (GS) [2]. When a person suffers from a neurodevelopmental (e.g. developmental 
dysgraphia) or neurodegenerative (e.g. Parkinson’s disease) disorder, she/he is very likely to exhibit 
graphomotor disabilities (GD). Such difficulties can have serious consequences, and can greatly affect 
a persons every-day life. To be able to introduce a timely and effective treatment and to improve a 
person’s quality of life, neurologists, psychologists, special education counselors, and other experts need 
a robust framework that will enable them to diagnose GD in an objective and complex way with 
minimum manual intervention, cost and time constraints [3]. Nowadays, the most promising approach 
into computerized assessment of GD utilizes various signals describing the process of 
handwriting/drawing acquired by a digitizing tablet [4]. Such signals represent movement of a digitizing 
stylus (pen) on horizontal and vertical axis, pressure, tilt and azimuth, acquired with respect to a specific 
series of timestamps (referred to as online handwriting). In addition, modern digitizers have the ability 
to record the movement above the surface (in-air movement). As shown in a variety of studies [5, 6, 7], 
online handwriting provides us with the capability of going beyond the limitations of human perception 
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and to characterize the handwriting/drawing process in terms of its kinematic, dynamic and temporal 
features that are not accessible from a final product using a conventional pen and paper methodology. 
Recently, online handwriting has been advantageously used in a variety of research studies focusing on 
identification and assessment of GD in children experiencing developmental dysgraphia (DD) [7], or in 
adults suffering from Parkinson’s disease (PD), Alzheimer’s disease (AD), essential tremor [5], etc, 
where most of these studies employed the differential derivative based handwriting features. Despite the 
indisputable success of these features in various use-cases, our last studies have pointed out to the 
necessity of additional research in the field of fractional calculus (FC) in direction of introducing a novel 
framework for unique and more advanced representation/parameterization techniques of 
handwriting/drawing. In our recent studies [4, 7, 8, 9], we established new handwriting parametrization 
techniques utilizing fractional-order derivatives (FD) as a substitution of the conventionally used 
differential derivatives in the kinematic handwriting features extraction. We identified that FD could be 
advantageously used to outperform some traditional approaches into GD quantification and assessment 
in children/adults with neurodevelopmental/neurodegenerative disorders. Since the part of our research 
has been motivated and supported by the COST Action CA15225, we would like to summarize the 
proposed usage and results of FD as a digital filter in the process of online handwriting features 
extraction for analysis of neurodevelopmental/neurodegenerative disorders. 

Datasets 

For the purpose of this work, we used two different databases. Firstly, the Parkinson’s disease 
handwriting database (PaHaW) [10]. The database consists of several handwriting or drawing tasks 
acquired in 37 PD patients and 38 age- and gender-matched healthy controls (HC). The participants 
were enrolled at the First Department of Neurology, St. Anne’s University Hospital in Brno, Czech 
Republic. All participants signed an informed consent form approved by the local ethics committee. 
Secondly we used a database that consists of 85 children (31 girls and 54 boys) attending 3rd and 4th 
grade at several primary schools in the Czech Republic. Children were asked to perform drawings, 
writings, and several cognitive tests based on a protocol consisting of 31 tasks designed in cooperation 
with psychologists and special educational counselors. Parents of all children participating in this study 
signed an informed consent form approved by the Ethical Committee of the Masaryk University. During 
handwriting tasks performance, the participants were rested and seated in a comfortable position. A 
digitizing tablet (Wacom Intuos) was overlaid with an empty paper and the participants wrote on that 
using the Wacom Inking pen. Online handwriting signals were recorded with fs = 150 Hz sampling rate. 

Methodology 

One of the goals of our research is the investigation of several FD approximations as a new advanced 
approach for handwriting parameterization. We developed this method to substitute the conventional 
differential derivative in the feature extraction process in order to improve the quantitative analysis of 
the GD. In the scope of our research, we utilized three FD approximations: Grünwald-Letnikov (GL), 
Riemann-Liouville (RL), and Caputo (C), implemented by Valério Duarte in Matlab [11, 12]. The one 
with the best quantification abilities will be selected and implemented in the final digital filter. For a 
better understanding of the advantages of fractional-order derivatives, let us continuously recall all 
employed FD approaches. Firstly, the Grünwald-Letnikov approach [13]. The usual n-order derivative 
of f(t) can be written as the limit 
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where D ( )GL y t  denotes the Grünwald-Letnikov derivatives of order α of the function [f](t), and h 
represents the sampling lattice. 

Next, we employed FD given by Riemann-Liouville. The left-inverse interpretation of D ( ) y t  by 
Riemann-Liouville from 1869 is defined as 
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where D ( )RL y t  denotes the Riemann Liouville derivative of order α of the function y(t), Γ is the 
gamma function and n − 1 < α ≤ n, n ∈ ℕ, t > 0. 

Finally, we employed FD given by M. Caputo [14]. In contrast to the previous ones, the improvement 
hereabouts lie in the unnecessity to define the initial FD condition [15, 16]. The Caputo’s definition 
from 1967 is 
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where D ( )C y t  denotes the Caputo derivative of order α of the function y(t), Γ is the gamma function 
and n − 1 < α ≤ n, n ∈ ℕ, t > 0. 

Handwriting Features 

Basic kinematic features from the input handwriting signals were extracted, namely velocity, 
acceleration, jerk and their horizontal and vertical variants. In the first step, the FD-based features were 
calculated for different values of α in range from 0.1 to 1.0 with the step of 0.1. Next, the most 
discriminative handwriting tasks were selected and deeper analyzed with a finer step of α (0.01). This 
selection was made in order to reduce computational cost of the analysis and to improve the performance 
of the FD-based digital filter. Statistical properties of all extracted handwriting features were expressed 
using mean, median, standard deviation (std), and maximum (max). 

Statistical Analysis 

At first, we performed the normality test of the handwriting features using the Shapiro-Wilk test. In the 
case of non-normally distributed features, we utilized the Box-Cox transformation. Next, to assess the 
strength of the relationship between the feature values and the clinical scales, Spearman’s and Pearson’s 
correlation coefficients were computed (we considered the level of significance equal to 0.05). During 
the statistical analysis, we controlled for the effect of several confounding factors. To evaluate the 
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discriminative power of the handwriting features, we performed a multivariate classification and 
regression analysis. For this purpose, we employed the state-of-the-art algorithm XGBoost [17] (10-fold 
cross-validation with20repetitions). The XGBoost algorithm was selected, because of its ability to 
achieve good performance on a small data set. Classification performance was evaluated by the 
Matthew’s correlation coefficient (MCC), classification accuracy (ACC), sensitivity (SEN), and 
specificity (SPE). The regression model’s performance was evaluated by the mean absolute error 
(MAE), the mean square error (MSE), the root mean square error (RMSE), and the estimation error rate 
(EER). 

Results 

The best classification accuracy obtained by the FD-based features was ACC=87%, SEN = 82% and 
SPE = 90%. In comparison to the base line, we improved the classification accuracy by 10% using 
kinematic features only. To better understand the advantage of FD in kinematic analysis of online 
handwriting, we plotted vertical velocity patterns of the sentence task for different orders of FD (see 
Figure 1). We can observe a big difference between α = 0.1 and the rest of the orders, including the full 
derivative. This large distance means that we are working with completely new information that is far 
from that contained in the full derivative. A comparison of an identical feature (i.e. velocity for α = 0.2) 
extracted from the handwritten product associated with the GD is shown in Fig. 2. It illustrates the 
differences across the involved FD approximations. The velocity function extracted by the Caputo’s FD 
dominates by significant peaks in the positions, where a subject interrupts the performance for a moment 
and then continues writing. These interruptions are also visible in the function computed by the 
Riemann-Liouville approach, though in the form of a constant line followed by elevated oscillations 
instead of peaks. 

 
Fig. 1: Vertical velocity patterns of the sentence task for different orders of fractional-order derivatives (FD) 

 
Fig. 2: Comparison of the velocity function (α = 0.2) across all the FD approximations (a child associated with 

graphomotor difficulties; C–Caputo; GL–Grünwald-Letnikov; RL–Riemann Liouville). 
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In the scope of the correlation analysis associated with the clinical scales, the Caputos FD approach 
exceeds the rest of the analyzed FD approximations. However, the results of the multivariate analysis 
suggest that the Riemann-Liouvilles approximation in the field of the quantitative GD analysis 
outperforms the other ones (MAE = 0.65, i.e. error = 16.25%). Figure 3 reports the α orders of the 
handwriting features included in the best-performing classification and regression models of the most 
discriminative tasks (repetitive loops and sentence). By intersectioning optimal α ranges of classification 
and regression analysis, we created a final optimal range of α from 0.05 to 0.45 and from 0.60 to 0.80, 
that is recommended to be used in the final digital filter. 

 

Fig. 3: Distributions of FD order α among the fine-tuned parameters 

Conclusion 

In this contribution, we summarized our current research in the field of GD analysis employing the FD-
based kinematic features. Regarding the results, the most suitable candidate for a digital filter used 
during the assessment of GD is the Riemann Liouvilles FD. The identified optimal values of the FD 
order should be in the range from 0.05 to 0.45 or from 0.60 to 0.80. Identification of these ranges enables 
a significant reduction of computational cost (by approximately 50%). 

Acknowledgement–This article is based upon work from COST Action CA15225, a network supported 
by COST (European Cooperation in Science and Technology). 
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Abstract: Practical performances of optimal fractional order control system designs are degraded in real-
world applications because of two major factors: The first one is the limitations in mathematical 
modeling of the real systems. Static mathematical modeling cannot deal with the complexity, changing 
dynamics and environmental uncertainties such as unpredictable disturbance and measurement noise. 
The second one is the approximate realization of the optimal fractional order controller that may cause 
a loss of control benefits that are provided by the fractional order system at certain levels. To address 
these two points in order to maintain theoretical optimality in real-world applications, namely practical 
optimality, one solution might be consideration of the approximate model of fraction order controllers 
in the optimal controller design tasks, which can mitigate the inherent performance degradations that 
are caused by the convergence errors of the approximation methods (e.g. band limited approximation to 
frequency responses, time response mismatches etc.). The second is the use of online fractional order 
model identification, which is continuously updated based on the recent data from the real systems, in 
order to represent very recent dynamical behavior of the systems. This somewhat helps coping with 
model complexity and uncertainty problems that are the major limitation of mathematical modeling. 
When online fractional order model identification is combined together with optimal tuning rules, the 
practically optimal solution can come from the data-driven fractional order control paradigm. 

Keywords: Model reference adaptive control, fractional-order model, fault tolerance, disturbance 
rejection. 

Extended Abstract 

To contribute to the data-driven optimal fractional order control paradigm, one firstly addressed the 
online time-domain identification problem of fractional order systems from the input-output 
measurement data from the real systems. In order to perform optimal identification of One Non-Integer 
Order Plus Time Delay (NOPTD-I) models, a STSM collaboration was conducted in 2018. Research 
outputs of this fruitful STSM collaboration was published in [2]. In this extended abstract, we present a 
brief review of these research papers that were written on the scope of the Task 3.3 of Cost Action 
CA15225 [1]. 

This short abstract focuses on the utilization of two fundamental numerical solution methods of 
fractional calculus for the identification of One Non-Integer Order Plus Time Delay with one pole 
(NOPTD-I) models in [2]. These are Mittag-Leffler (ML) function and Grunwald-Letnikov (GL) 
definition. The identification process is carried out by estimating parameters of a NOPTD-I type transfer 
function template according to the experimental step response data. The NOPTD-I type transfer function 
templates are commonly expressed in the form of 
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where the parameter K  is a DC gain, the parameter   is the time constant, the parameter L  is the time 
delay and the parameter   denotes the fractional order of this model template [3]. The differential 
equation form of this NOPTD-I model is written by 

)()()( LtKutytyD −=+ ,     (2) 

where the initial condition )0( +y  is generally taken zero in order to obtain a transfer function model 
[2]. To obtain impulse responses of NOPTD-I models, two definitions of fractional order derivative are 
considered: 

a) Mittag-Leffler (ML) definition: 

The ML method yields a continuous time solution in infinite time series form that was written in type 
of ML function family [16].  
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When this definition is applied to equation (1) and infinite time series is truncated to p  number of terms 
because of the finite computation time realization, one obtains an approximate solution of the impulse 
response without considering the time delay element [2]  
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Afterwards, to implement the time delay L  for a casual system, the delay element Lse−  can be 
implemented by using the time-shifting property of Laplace transform and setting zero to all values 
before the time L . Accordingly, the impulse response of )(sGp  model is expressed based on the ML 
function as [2] 
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In order to obtain a discrete time solutions for a time increment of snTt = , ,...2,1,0=n . 

b) Grunwald-Letnikov (GL) definition: 

The second approach is based on the GL definition of fractional-order derivative operator, which was 
defined for a non-zero sampling period sT  as [5]  
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Then, by using equation (6) and (7), the differential equation form of NOPTD-I model (equation (2)) is 
solved numerically as [2] 
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To obtain an impulse response of )(tyg , the input )(tu  is taken as a discrete impulse )(n . Then, the 

impulse response )(tyg  for sT  time increments and a sampling of snTt = , ,...2,1,0=n , [2] 
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To implementing time delay L  for a casual system response from the model, a time shifting L  is applied 
to )(nyg , and all values before the discrete delay time sL TLn /=  was set to zero.  The impulse 

response of )(sGp   is calculated by [2] 
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The time response of )(sGp  function can be found by calculating the discrete convolution form, 
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Experimental Study 

To solve the optimal step response fitting problem, a time domain modeling approach was implemented 
to identify model parameters of NOPTD-I models by using metaheuristic optimization algorithm: 
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A PSO algorithm was performed for the tuning of these four parameters that are represented by the 
particle position vectors as L]K[ =X . The time responses of NOPTD-I models are numerically 
calculated by using the impulse responses of NOPTD-I models. 

An experimental study was conducted for the NOPTD-I model identification of the pith rotor of TRMS 
platform that was produced by Feedback Inc [6]. We applied step input and captured rotor angle data 
with 0.1 sec sampling period. By using this data, NOPTD-I model identification was carried out based 
on ML and GL solutions for 100 sec data and 50 sec truncated data windows. Table 1 shows NOPTD-I 
model parameters that were identified for the experimental data. The results are promising for practical 
optimality of FO controllers via contributing to realization of the data-driven optimal FO control 
systems.  
Table 1. Parameter estimation and MSE performances of pitch rotor model identification for 100 sec and 50 sec 
data windows 

Methods  K    L    MSE  
ML (100 sec) 0.3911 2.6314 0.0595 0.9067 0.001476 
ML (50 sec) 0.360747 1.631099 1.209194 1.264333 0.001733 
GL (100 sec) 0.3658 0.2080 2.0974 1.9890 0.000618 
GL (50 sec) 0.358017 0.213390 1.980655 2.000783 0.001107 
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Abstract: Different incarnations of fractional-order control, most prominently of CRONE1 – and 
fractional-order proportional-integral-derivative (FOPID) types, have been considered as  a replacement 
for conventional control in the industry for a rather long time. On the other hand, the industry as a whole 
exhibits a certain inertia when it comes to introducing new technology which does not, at least at first 
glance, offer significant benefits and a considerable return on investment. Furthermore, looking at 
fractional-order control from a bird’s eye view, one can clearly observe that one of the obstacles for 
industrial integration of advanced fractional-order control methods is the problem of implementation of 
the latter. Indeed, with conventional, widely accepted PID controllers, the implementation, at least in its 
most basic form, is trivial. Not so with fractional-order controllers, however, since an accurate and 
efficient implementation thereof is much more involved. Obviously, most controllers nowadays are 
digital, so in the general use case one would need to develop a digital fractional-order controller 
implementation that would be (1) accurate to the design specifications to ensure that the benefit 
stemming from the use of fractional-order control can observed (this should also convince the industrial 
partners that FO control has clear advantages); (2) be reliable to ensure stable operation of a given 
industrial plant. In this contribution, we discuss the aforementioned issues and propose a fractional-
order PID controller implementation that, over the years since its conception, has been shown to offer 
said favorable qualities. 

Extended Abstract 

Proportional-integral-derivative (PID) controllers have become a true staple of industrial control [1,2]. 
Although the basic form of this controller is relatively simple, the feedback-based control actions are 
fundamental in their function: the proportional component drives the output of a given plant in 
proportion of and in the opposite direction to the output error signal, the integral component allows to 
eliminate steady-state error by accumulating the error signal, and the derivative component introduces 
a predictive capacity to the control loop to minimize the error due to disturbances. 

Therefore, when the literature describing FOPID controllers has emerged in the 1990s pioneered by 
researchers such as Igor Podlubny [ 3 ], the expectation was that industrial application of FOPID 
controllers would soon follow. Indeed, given the two additional degrees of freedom, represented by the 
orders of integration and differentiation that are allowed to be real numbers instead of being fixed at 
unity, FOPID controllers are theoretically capable of improving the performance of a given control loop 
beyond the capacity of conventional PID controllers. The transfer function in the Laplace domain 
corresponding to the basic parallel form of a FOPID controller is 

 ( )  −= + +p i dC s K K s K s , (1) 

where Kp, Ki, and Kd are real numbers representing the proportional, integral, and differential gains, 
respectively, and λ > 0 and µ > 0 are orders of the integral and differential components, respectively. It 

 
1 The acronym in French stands for “Commande Robuste d’Ordre Non-Entier” which means “Robust Control 
of Non-Integer Order” and relates to the developments of the University of Bordeaux research group based on 
fundamental research of Alain Oustaloup et al. 
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is obvious that the control structure in (1) offers more flexibility than in the case of a conventional PID 
controller when λ = µ = 1. 

The benefits stemming from this additional tuning flexibility have been confirmed by many studies 
about the application of FOPID control to industrial processes [4,5]. However, there are also many issues 
with industrial integration of FOPID controllers that were also outlined in [5]. One of these issues is the 
implementation of fractional operators which serve as the basis for the realization of the integral and 
differential components of the FOPID controller. The key problem is that an ideal implementation, at 
least theoretically, cannot be achieved using numerical methods, hence approximations must be used. 
One can compare that with a basic discrete-time implementation of the parallel form of a PID controller 
which can be summarized in a single line as 

 
0

( ) ( ) ( ) ( ( ) ( 1))
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= + + − −
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u k K e k K e j K e k e k , 

where u(·) is the generated control law and k designates the sample number. On the contrary, for 
implementing a FOPID controller, one typically turns to high order conventional transfer function based 
approximations of the involved noninteger components. Out of those approximation methods, the 
CRONE method, developed by Oustaloup et al. [6], is among the most popular ones [7]. Many 
subsequent implementation attempts have either closely replicated Oustaloup’s recursive method in 
some form [8], proposed improvements for it [9], or considered relevant modifications [10,11,12] to 
improve on some qualities of the approximation. 

What concerns control systems, there are usually two choices when it comes to the implementation of 
fractional controllers: (1) the analog electrical circuit approximations (e.g., [13,14,15]), and (2) digital 
approximations based on discrete time analysis of the controller including, e.g., microprocessor based 
implementations [12,16,17]. While the analog circuit based implementations can, in general, one day 
lead to a true fractional-order element, when one discusses efficient industrial application, one usually 
considers digital implementations because hardware that can run such implementations is ubiquitous 
[5]. Furthermore, due to the system cost concerns of industrial community, an embedded software FO 
controller realization options for low-frequency process control applications such as liquid level control 
may be possible by using low-cost, popular microcontrollers (e.g., Raspberry Pi or Arduino [18]). For 
high frequency and high performance applications of FO elements, FPGA [19,20] and DSP card 
realizations [12] are currently available. A diagram showing this type of implementation is depicted in 
Fig. 1. 

 

Fig. 1 A schematic diagram of an implementation of a fully integrated fractional-order control systems 
that include analysis, design, implementation and verification environments [5]. 
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In this contribution, the focus is on a software based implementation of FOPID controllers mainly by 
combining the results from [21,22,23]. The contribution is also summarized in a conference paper [24] 
which marks the first public release of the relevant code to the interested parties including researchers 
and practitioners working in the field of control system design. It should also be noted that since we are 
dealing with fundamental building blocks—i.e., noninteger integration and differentiation—the same 
implementation methods can also be applied to other types of controllers [7,8] that make use of these 
fundamental blocks thus expanding the scope of the present contribution beyond just fractional-order 
PID controllers. Hence, the code can be reused for the purpose of creating general noninteger integration 
or differentiation blocks and using them as parts of other types of controllers. 

Methodology 

The basic methodology for implementing the digital FOPID controller corresponding to (1) has been 
thoroughly documented in [ 21 ], therefore in the following only key ideas are provided. The complete 
procedure for obtaining an approximation of the controller in the form of a digital infinite impulse 
response (IIR) filter can be summarized as follows: 

1. Compute the approximations of the fractional integral and differential components separately 
using Oustaloup’s method using the design parameters [ωl ,ωh] (the frequency range of the 
approximation) and N (the order of the filter that results in a transfer function of order 2N + 1); 
note that where the implementation of the FOPID is concerned, according to the discussion in 
[7], the integral component should be approximated such that 
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2. Convert both approximations to discrete time using the zero-pole matching equivalents method 
with a sampling time of ts. 

3. Instead of using the resulting transfer function directly, convert it to a second-order section 
representation of the form 
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where Kc is the gain of the transfer function and ν is the resulting number of sections. This form 
ensures computational stability of the approximation. 

This implementation can lead to practically applicable results even in case of limited computational 
ability of the hardware chosen for the deployment of a FOPID controller [21]. Furthermore, some recent 
research results confirm long-term stability of the 32-bit microcontroller based implementation of the 
FOPID controller [25]. 

It is relatively simple to compute and compare the frequency domain characteristics of both the original 
controller in (1) and its approximation in (3) to ensure that the obtained controller approximation leads 
to the correct frequency domain specifications prescribed for the control loop within the valid frequency 
range. Stability assessment can also be performed on this basis. 

Software Implementation 

The software package providing support for both Python and C/C++ is available at GitHub [26] under 
the MIT license. 

Python implementation 
The Python implementation well complements the FOMCON toolbox version for Python 3 [23] and is 
intended for use with Python 3. Only the FOPID realization module is implemented presently, and no 
support for accurate timing is provided. Python 3 is not commonly considered a language that supports 
hard real time computations, but can use external synchronization [24]. The availability of the Python 
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implementation allows a wider circle of practicioners to work with FOPID controllers due to relative 
simplicity of using the implementation in any project. 

C/C++ implementation 
The C/C++ implementation is more involved. It also includes a FOPID controller tuning module. Since 
the code is available and reasonably well structured only the key points are recalled below. 

• The initial code was used with a microcontroller based implementation discussed in detail in 
[21]. It was rewritten to work in a software-in-the-loop (SIL) context, but it should be relatively 
easy to adopt it back to the form usable in a microcontroller or embedded system. 

• The arrays which hold the discrete coefficients of the second order sections in (3) are residing 
in a preallocated memory space to avoid potential issues stemming from dynamic memory 
allocation. Other variables, such as controller gains, orders, and the optimized parameters θ c 
along with corresponding orders are also placed in global scope. 

• F-MIGO rules and creating FOPDT approximations from FO-FOPDT are not yet implemented. 
The control designer is responsible for setting λ and µ manually. 

The current example implementation also uses the socket approach as does the Python implementation. 
With respect to this, the code should work without modification in Windows environment. For Linux, 
the socket communication part must be rewritten. 

Having both a Python and a C/C++ implementation of a FOPID controller readily available to 
researchers and practicioners ensures sufficient coverage of the target groups that are involved in 
automatic control design. Recent research results confirm the accuracy and reliability of the proposed 
controller implementation [ 21 , 22 , 25 ]. On the other hand, the technology readiness level is still 
modest. It is expected, especially due to the availability of the Python implementation, that deployment 
of FOPID controllers will be facilitated, however, thus leading to wider industrial adoption of the latest 
research results. 
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Abstract: This abstract illustrates recent results in fractional modeling and control of complex 
automotive systems. More specifically, the activities in the COST Action CA15225 focused on 
innovative injection systems reducing pollution and consumption in both Diesel and CNG internal 
combustion engines. The contributors proved that fractional-order modeling and control, as opposed to 
integer-order modeling and control, may offer benefits that are sometimes unpredicted or 
underestimated by researchers and practitioners.  
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Extended Abstract 

In the past years, ever growing efforts were devoted to new strategies for reducing fuel and energy 
consumption as well as polluting emissions of automotive engines. A continuous improvement of 
technologies was finalized to limit fuel consumption and operating costs, reduce harmful emissions 
(CO2, CO, NOx, HC, particulate matter, noise, etc.) and adhere to increasingly strict regulations. A goal 
in EU for 2030 is reducing greenhouse gases (GHGs) emission by at least 40% below 1990 levels, thanks 
to the increase of renewable energy, and improving energy efficiency by 27%. The goal for 2050 is 
reducing GHGs emission by 80%-90% and GHGs emission from transport by 60%. In common rail 
injection systems (CRIS), the advances in technology and combustion processes allowed a more precise 
metering of the air/fuel mixture demanded by the variations of engine speed and load, then a better 
performance and lower harmful emissions in every working condition. However, continuous 
developments are required to improve the metering that poses severe specifications on the fuel injection 
pressure, which can be controlled with accuracy, and on the injection timing. One main issue is then to 
develop accurate models for representing and controlling the injectors. However, fuel dynamics is 
complex and experimental tuning is hard, making the common rail injection control difficult and highly 
imprecise. Hence, fractional order models can significantly improve the prediction capabilities or reduce 
the model complexity, whereas advanced fractional-order controllers may guarantee better 
performance/robustness than integer-order counterparts. Here, two different applications are considered 
employing the CRIS technology. The first considers an electro-injector for Diesel engines. The second 
is based on compressed natural gas (CNG). The aim is showing the benefits, which are sometimes 
unpredicted or underestimated, by fractional-order models and controls. The above considerations 
motivated the activities in Task 4.1 of WG4, partially developed in cooperation with Professors Milan 
Rapaic, Roberto Garrappa, and Sverre Holm. The work partly relies on the outputs of Task 1.3, by 
extending the research results on parameter estimation of innovative engines, and on the outputs of Task 
2.3 [1]. 

Fractional-Order Modeling Fuel Flow in an Electro-Injector of a CR Diesel Injection System 

To achieve an efficient combustion, the electronic control unit (ECU) of a Diesel CRIS  must accurately 
meter the amount of fuel and the air-fuel mixture that is injected into the cylinders, even by 
implementing injection rate shaping (IRS) strategies to obtain a desired profile of the flow rate. As for 
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the electro-injectors, an accurate model is beneficial for optimizing their layout, parameters, and 
operation and for controlling IRS. The section view of the considered CR electro-injector and its main 
parts is shown in Fig. 1. 

 

Fig 1. Electro-injector in a common rail Diesel injection system, with its characteristic pipe to deliver fuel from 
the common rail volume 

Basically, two circuits can be distinguished: a control circuit and a feeding circuit. In the control circuit, 
fuel arriving from the common rail passes through orifices and enters a “control chamber”, in which the 
fuel pressure determines if the plunger-needle element is pushed down or up. In the feeding circuit, fuel 
arriving from the common rail flows through a high-pressure pipe, enters an accumulation volume and 
then a terminal “SAC” volume, from which it is injected into the cylinders when the nozzles are open. 
Fuel flow is regulated by a solenoid valve, which is employed to change the pressure acting on the 
plunger in the control chamber.  

The fuel is compressible, the feeding pipe is subject to elastic deformation, and distributed friction losses 
occur. Cavitation through the holes are considered. A complete mathematical model of the electro-
injector is obtained by partitioning it in connected volumes, in which fuel is accumulated. For some of 
these volumes, a lumped parameters representation by ordinary differential equations is suitable because 
the pressure is uniform and time-varying and there is no wave propagation. For the high-pressure pipe 
between the common rail and the accumulation volume, a distributed parameters representation is 
necessary to describe the wave pressure propagation. To this aim, the classical Navier-Stokes partial 
differential equations can be suitably extended by introducing fractional-order derivatives to improve 
model accuracy, resulting in the modified momentum and continuity equations: 

 𝜕𝛼𝑝

𝜕𝑡𝛼 + 𝑐0
2 𝜌0

2  
𝜕𝑢

𝜕𝑥
= 0 (1) 

 𝜕𝛽𝑢

𝜕𝑡𝛽 +
1

𝜌0
 
𝜕𝑝

𝜕𝑥
= 𝜈 

𝜕2𝑢

𝜕𝑥2 = 0 (2) 

where 𝑝 = 𝑝(𝑡, 𝑥) is the fuel pressure depending on time t  and on the location 𝑥 on the (unique) 
direction of propagation along the pipe, 𝑢 = 𝑢(𝑡, 𝑥) is the fuel wave velocity, 𝑐0  = 𝑐0(𝑝) is the speed 
of sound, 𝜌0 = 𝜌0(𝑝) is the density, 𝜈 = 𝜈(𝑝) is the kinematic viscosity, and the non-integer orders are 
0 < 𝛼 ≤ 1 and 0 < 𝛽 ≤ 1. To improve the model prediction, non-integer orders and the values of 
mechanical parameters have been optimized. An evolutionary technique based on Differential Evolution 
is employed to overcome the nonlinearity and complexity of the problem. Equations (1)-(2) can not be 
analytically solved. Then, a numerical method is employed by using boundary conditions, i.e. the 
instantaneous pressures and flows at the pipe inlet and outlet sections. The method is based on finite 
differences. Discretization of time-fractional derivatives uses the Grünwald-Letnikov (GL) scheme: 

 𝜕𝛼

𝜕𝑡𝛼 𝑝(𝑡𝑛, 𝑥) ≈
1

𝜏𝛼 [𝑝(𝑡𝑛, 𝑥) + ∑ 𝜔𝑛−𝑗
(𝛼)

𝑝(𝑡𝑗, 𝑥)𝑛−1
𝑗=0 ]  (3) 

 𝜕𝛽

𝜕𝑡𝛽 𝑢(𝑡𝑛, 𝑥) ≈
1

𝜏𝛽 [𝑢(𝑡𝑛, 𝑥) + ∑ 𝜔𝑛−𝑗
(𝛽)

𝑢(𝑡𝑗, 𝑥)𝑛−1
𝑗=0 ]  (4) 

where the coefficients of the GL scheme are recursively evaluated as 𝜔𝑗
(𝛼)

= (1 −
𝛼+1

𝑗
) 𝜔𝑗−1

(𝛼)  and 
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𝜔𝑗
(𝛽)

= (1 −
𝛽+1

𝑗
) 𝜔𝑗−1

(𝛽). The approximations are inserted in the momentum and continuity equations in 
a mixed implicit/explicit way. Discretization of space derivatives is based on partitioning the pipe in 
several distinct volume cells. A staggered grid is obtained (Figure 2). Pressure is computed at the center 
of each cell, and speed is computed on every face between two adjacent cell faces, 𝑥

𝑘+
1

2

=
(𝑥𝑘+𝑥𝑘+1)

2
. 

Then 𝑃𝑘(𝑡) = 𝑝(𝑡, 𝑥𝑘) and 𝑈
𝑘+

1

2

(𝑡) = 𝑢 (𝑡, 𝑥
𝑘+

1

2

). 

 
Fig. 2. Staggered grid for spatial discretization of pressure P (ball symbol) and velocity U (cross symbol) 

The fully discretized version of the model consists in the following two linear systems of algebraic 
equations: 

 {
(𝐼 − 𝐿2𝐴11)�̅�𝑛 = − ∑ 𝜔𝑛−𝑗

(𝛼)
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𝑗=0
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2
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2
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𝑇
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𝑇

∈ ℝ𝑀, 𝐿1 =
𝜏𝛽

𝜌ℎ
, 𝐿2 =

𝑐2𝜏𝛼+𝛽

ℎ2 , 𝐿3 =
𝑐2𝜌𝜏𝛼+𝛽

ℎ
, and 𝐴11, 𝐴12, 𝐴21, 

�̃�22 block diagonal matrices. 
 
To assess the model performance, simulation results obtained in the MATLAB/Simulink environment 
(Figure 3) were compared with experimental data measured on a real injector. Model parameters were 
derived from available geometric data and from experimental tests carried out in different operating 
conditions. Experimental data for the injected flow rate are available in the following conditions: the 
exciting time interval of injectors is 700 s, the common rail reference pressure is 800, 1200, and 1600 
bar. Then simulation compared results with these data (Figures 4-6). Moreover, the real common rail 
pressure is used as input to the pipe. A constant uniform pipe section is assumed, the time discretization 
points are 3000  N  10000, the space discretization points are 20  M  100. The non-integer orders 
 and  were varied to evaluate the effect on model prediction capability. 
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Fig. 3. Simulink block diagram 

 

Fig. 4. Flowrate prediction at 1600 bar 
 

 

 

 

Fig. 5. Flowrate prediction at 1200 bar 

 

Fig. 6. Flowrate prediction at 800 bar 
 

Fractional-Order Modelling of Common Rail Pressure in CNG Engines 

The second application involves the CNG injection systems, which are considered because of low cost, 
availability in many countries, and the obvious capability to reduce pollution from harmful gaseous 
emissions if compared with Diesel or gasoline engines. In this case, obtaining the desired levels of the 
injection pressure is a challenge, and defining the most adequate control technique is an open problem. 
Namely, the gas compressibility makes the working point of the CNG injection system change a lot, on 
dependence of the speed and power requested by the driver, so that complex phenomena affect the 
performance. A possible solution is to improve the robustness and performance of the controllers by 
advanced schemes and by model-based design approaches. Here, it is shown how to represent the 
pressure dynamics in the injection system by identifying a linear non-integer-order model that describes 
the process in a more effective and compact way than standard integer-order models of high order.  
The system under study is represented in Figure 7. The gas is delivered from a high-pressure tank (40-
200 bar) to a common rail volume (4-20 bar). Gas flows through different pipes and passes through a 
mechanical pressure reducer, in which a piston separates a control chamber from a main chamber, in its 
turn linked to the common rail volume. A solenoid valve regulates the flow into the control chamber. 
The valve and all the process are controlled by an ECU, which determines the common rail pressure and 
controls gas flow by setting the injection timing and the current driving the valve. 
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Fig. 7. Operation of the CNG injection system. 

The model of the injection system must trade-off between accuracy and simplicity and consider the 
suitability for control development. Complex behaviors incorporating both temporal and spatial 
dynamics can be suitably described by PDEs. However, when the spatial component of the process 
dynamics is not of interest, and only input-output relationships are considered, these processes are 
described by various forms of irrational transfer functions and, in many cases, the resulting behavior is 
best modeled by sets of fractional differential equations. Besides, a simplified fractional order model 
would be more appropriate for control purposes than a distributed-parameters model, and could be easily 
derived by an identification process based on real experimental data. The two-steps approach presented 
here enables the derivation of a linear fractional-order model of the CNG injection system. The first step 
aims at fitting time-domain data by using an intermediate ARX model of high degree, whose parameters 
are estimated using the least-squares method. The model is over-parameterized so that all the process 
dynamics is captured. The evaluation of its frequency response allows to decide which class of linear 
models is the most suitable one for the process under consideration. The second step involves the 
derivation of the linear fractional-order model from the identified ARX model. As shown in figure 8, 
the amplitude characteristic of the ARX model is approximately piece-wise linear, with two critical 
frequencies and slopes which are not integer multiples of 20 dB/dec. Then, it is possible to obtain a 
fractional model of simpler structure, with less parameters, yet similar descriptive capabilities. 
Therefore, a model of the following structure can be postulated: 

 𝐺(𝑠) = 𝑘
(

𝑠

𝜔2
+1)

𝛼2

(
𝑠

𝜔1
+1)

𝛼1
(

𝑠

𝜔3
+1)

𝛼3  (6) 

Unknown model parameters are the critical frequencies and orders. To obtain the parameter values, a 
Particle Swarm Optimization algorithm considered the following cost function, 

 𝐽 = ∑ |20𝑙𝑜𝑔|𝐺(𝑗𝜉𝑘)| − 20𝑙𝑜𝑔 |
𝐵(𝑒𝑗𝜉𝑘𝑇)

𝐴(𝑒𝑗𝜉𝑘𝑇)
||𝑁

𝑖=1   (7) 

which considers the amplitude response discrepancy between the fitted ARX model and the fractional 
model which is being identified. 𝜉𝑘 are adjacent angular frequencies chosen to be uniformly logarithmic 
distributed in the range from 𝜔𝑚𝑖𝑛 = 0.1 rad/s to 𝜔𝑚𝑎𝑥 = 100 rad/s. N = 100 was used. 

Fig. 8 shows the agreement of the ARX model with the fractional-order one in the frequency domain. 
Fig. 9 compares the fractional-order model output and the experimental results in the time domain. 
Validation of the fractional-order model is assessed by considering different operating conditions: a 
constant 40 bar tank pressure, a 2400 rpm engine speed, a 8 ms injectors exciting time interval, and 
successive step variations of the solenoid valve control signal. As expected, the results show that the 
fractional-order model well approximates the real system behavior both during the rising and drop 
transients. The model is also able to catch the oscillating behavior within the control period, with 
pressure variations of the same amplitude.  
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Fig. 8. Relevant part of the frequency characteristic 
of the optimal ARX model, and the optimal 
fractional-order model. 

 

Fig. 9. Comparison between experiments and 
simulations (fractional-order model) for successive 
step variations of the solenoid valve driving signal.

 

Fractional-Order Control of Common Rail Pressure in CNG Engines 

Parametric variations due to substantial changes of the injection system working points, complex fluid-
dynamic phenomena, and disturbances, can degrade the pressure control performance in CNG injection 
systems. For this reason, the common integer-order PID controllers are not the best solution for the 
injection pressure control. Conversely, Fractional-order PI (FOPI) controllers improve robustness for 
each considered working point. Here, it is presented a control scheme which combines a systematic 
design methodology of FOPIs and a gain scheduling technique. The design method is based on a 
linearized model of the CNG injection system, which is derived by applying physical laws (continuity 
law, conservation of momentum, Newton’s second law). The model inputs are the command to the valve 
(u1) and to the injectors (u2), the last being considered as a disturbance, while the output is the rail 
pressure: y = x2. The pressure dynamics can be represented by a first-order transfer function: 
 𝐺𝑝(𝑠) =

𝐾𝑒

1+𝑇𝑒
𝑒−𝐿𝑒 𝑠 (8) 

where Ke is the equivalent static gain, Te is the equivalent time constant, Le is the equivalent dead-time. 
The injection system works in several conditions that depend on the driver power request, the engine 
speed, and the applied load. It follows that the triple (Ke, Te, Le) depends on the working point, in 
particular on the pressure in the tank, resulting in a family of models. However, Le can be assumed 
constant to represent the pressure propagation delay from the main chamber to the common rail. 
The proposed control methodology employs FOPI controllers and gain scheduling. The controllers are 
expressed by the following transfer function: 
 𝐺𝑐(𝑠) = 𝐾𝑃 +

𝐾𝐼

𝑠𝜈 =
𝐾𝐼 (1+𝑇𝐼 𝑠𝜈)

𝑠𝜈   (9) 

Gain scheduling is used to switch between FOPI controllers that are designed for different working 
points to cope with system nonlinearities. In more details, the controllers are designed for specific 
reference working points by a loop-shaping technique, which is reinforced by the D-decomposition 
methodology, a classical approach for robust stability analysis. The loop-shaping technique allows to 
achieve a good tradeoff between frequency-domain performance specifications for an optimal feedback 
system and robustness specifications for a nearly constant phase margin in a sufficiently wide frequency 
range.  
The controller design takes advantage of the Bode’s idea on the optimal open-loop frequency response 
[2]: it consists in shaping the asymptotic gain diagram, mainly in choosing the slope of the segment 
crossing the frequency axis, and maintaining this slope in a wide frequency interval around the crossover 
frequency. Hence, the phase will have a nearly flat trend and the phase margin will be constant in the 
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same interval. This characteristic is a clear indication of stability robustness even for high gain 
variations. Moreover, to obtain an optimal feedback system in the Kalman’s sense, in a unitary feedback 
loop with the closed-loop transfer function F(s) = 1/[1 + G-1(s)], a high open-loop gain |G(j)| would be 
required for each , such that it holds |1 + G-1(j)|1 and |F(j)|1. Namely, this condition would imply 
an almost perfect input-output tracking. To avoid stability problems, |G(j)| is shaped to get high gains 
at low frequencies and a roll off at high frequencies. The practical procedure is in two steps: a) choose 
the bandwidth in which optimality is desired and determine the crossover frequency where to guarantee 
a specified phase margin; b) determine the fractional integrator so that the phase plot of the open-loop 
gain is nearly flat (constant phase margin PMS) in a sufficiently large range around the crossover 
frequency. It can be demonstrated that these conditions are fulfilled by setting the controller parameters 
as follows: 
 𝑇𝐼 =

𝜔𝐶𝑇𝑒+𝑡𝑎𝑛(𝜔𝐶𝐿𝑒)

𝜔𝐶
𝜈[(𝑆−𝜔𝐶𝑇𝑒𝐶)−(𝐶+𝜔𝐶𝑇𝑒𝑆) 𝑡𝑎𝑛(𝜔𝐶𝐿𝑒)]

 (10) 
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𝑃𝑀𝑆

𝜋/2
 (11) 

 𝐾𝐼 =
𝜔𝐶

𝜈

𝐾𝑒
√

1+𝜔𝐶
𝜈𝑇𝑒

2

1+2𝑇𝐼𝜔𝐶
𝜈𝐶+𝑇𝐼

2𝜔𝐶
2𝜈 (12) 

The loop-shaping design technique guarantees a robust control system. The D-decomposition 
methodology allows to determine the entire set of controller gains leading to a stable closed-loop system. 
If PI/PID controllers are used, this set is defined in a two- or three-dimensional space and, once the gains 
are fixed, a point in the set is determined. The gain scheduling to switch between FOPI controllers is 
based on a sensitivity analysis of model coefficients. 
Simulation tests were performed by using a nonlinear accurate model of the CNG injection system, 
which was implemented by the AMESim virtual prototyping tool. During the simulations, typical value 
for the reference pressure pCR and injection timing tinj were considered, each yielding a different triple 
(Ke, Te, Le), then a different controller. The aim was to compare PI and FOPI controllers, both gain 
scheduled in the same way. The most important result should be limiting the overshoot in the actual 
common rail pressure. Namely, overshoot would imply too much injected fuel, which alters the air-fuel 
ratio and increases consumption and emissions. The simulation experiments considered step variations 
of reference pressures, so that the gain scheduling determined the switch between three FOPI or PI 
controllers. As shown in Figure 10, the FOPI yielded better and smoother responses with reduced 
overshoots, and nonlinearities considerably affect performance of PI controllers. 

 
 

Fig. 10. Rail pressure in CNG injection system in response to a large step. 
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Conclusions 

The common rail pressure control is a task made difficult and highly imprecise due to nonlinearities and 
complex phenomena involved in the injection process. However, this work demonstrates that the 
adoption of control-oriented models including fractional dynamics or non-integer order characteristics 
can significantly improve the prediction capabilities or reduce the model complexity, whereas advanced 
control schemes taking advantage of fractional-order controllers guarantee better performances than the 
standard integer-order controllers. 
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Abstract: Adaptive control is a central topic for robust performance of practical control systems because 
of uncertainties in real-world applications. These real-world uncertainties are considered as 
unpredictable disturbances, model perturbations, alteration operating conditions, effects of aging etc. in 
control system design. Model reference adaptive control (MRAC) is one of the successful approaches 
in the adaptive control topic, and therefore the possible contribution of fractional calculus to MRAC 
should be researched in Task 4.3. In this abstract, we present a brief review of our research papers that 
were written on the scope of WG4 of Cost Action CA15225 [1]. Specifically, a methodology for the 
utilization of fractional-order system modeling in MRAC was shown, and possible advantages of the 
presented method for fault-tolerance and disturbance rejection were discussed. 

Keywords: Model reference adaptive control, fractional-order model, fault tolerance, disturbance 
rejection. 

 

Extended Abstract 

Real world performances of model-based control systems strongly depend on accurate modeling of the 
controlled systems. Researchers commonly agreed on the conclusion that a key contribution of fractional 
calculus to engineering and science problems is the exploitation of the modeling potentials in the 
fractional calculus for the system modeling [2]. Fractional-order system models can provide more 
accurate representation of real-world phenomenon. It is an expectable result because the integer-order 
dynamic system modeling is indeed a subset of fractional-order dynamic system modeling. Therefore, 
potentials of fractional calculus have manifested itself in infinitely expanding the modeling spaces of 
dynamical systems towards the space of non-integer-order differential equations. This significantly 
enhances the frequency domain characterization performance of the dynamic system models by allowing 
fractionally adjustment of amplitude and phase responses of the systems. Control engineering benefited 
from this property and the research efforts have widely focused on migration of the classical control 
structures towards fractional-order control domain. The fractional-order PID (FOPID) controller family 
was investigated extensively and the related issues such as stability, optimal tuning were addressed in 
many works [3-7]. Previously, the fractional-order MIT rule was suggested by Vinagre et al and 
improvement of fractional-order derivative operator on the MIT rule was discussed. However, this study 
did not directly address the utilization of fractional-order modeling in MRAC and an efficient, 
straightforward integration of FOPID control loop and MRAC loop. This hierarchical integration 
strategy in a multi-loop architecture can achieve a control performance of FOPID control system that is 
combined with adaptation skills of MRAC [8]. We also anticipated that the fractional-order modeling 
can also contribute to the MRAC structure by providing more relevant reference models. These points 
are the motivations of our studies related to Task 4.3 of WG4 and Task 3.3 of WG3 in Cost Action 
CA15225. With collaboration of Prof. Eduard Petlenkov and Dr. Aleksei Tepljakov from Tallinn 
University of Technology, we investigated the utilization of fractional-order modeling in conventional 
MRAC structure and demonstrated some significant advantages of incorporation of optimal FOPID 
control system and MRAC structure for the fault-tolerance and disturbance rejection [9,10]. 
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A multi-loop MRAC-FOPID Control: Incorporation of Model Reference Control and FOPID 
Control Loops 

Figure 1 shows an incorporation of MRAC and FOPID control loops: The inner loop is the FOPID 
control loop that provides stability and optimal control of the system, and the outer loop is a MRAC 
structure that increases the adaptation skill of FOPID loop for improvement of robust control 
performance for disturbances, faults or model perturbations. We observed that when the reference model 
of MRAC is chosen as a fractional-order model of the inner closed loop FOPID control loop, such a 
hierarchical, multi-loop MRAC-FOPID control structures inherently exhibit an enhanced robust control 
performance compared to the conventional FOPID control systems [9,10]. The adaptation skill, which 
is provided by MRAC loop, can increase disturbance rejection [10] and fault tolerance [9] performances 
of FOPID control systems. Stability issues of the stand alone MRAC can be resolved by the FOPID 
control loop. This mutual interaction between both loops can overcome the shortcoming of the each loop 
while operating alone. Figure 2 depicts these mutual benefit interactions between loops. 

 

Fig. 1. Block diagram of the multi-loop MRAC-FOPID control structure [9]  

 

 

 

 

 

Fig. 2. Interaction schematic that illustrates integration benefits of MRAC and classical FOPID control 
loops  

 

Design tasks of the proposed multi-loop MRAC-FOPID system can be summarized as [8,9]:  

(i) Optimal design of the closed loop FOPID control loop: The designer optimally tunes FOPID 
controller in the inner loop according to one of the closed loop FOPID tuning methods [3-7].  

(ii) Determination of reference model: The designer applies the closed loop model identification to 
FOPID control loop and obtains a fractional-order transfer function model of the closed loop control 
system when it is in well-tuned, fault-free and optimal state.  

 (iii) Appending MIT rule to the closed loop control system: After identification of the reference model, 
the outer loop performing MIT rule is connected to the reference input ( r ) of the closed loop system by 
means of a multiplier block as shown in Figure 1. This makes closed loop FOPID control system an 
inner control loop of the overall multi-loop system. 

MRAC loop FOPID loop 

Stability and optimal control performance 

Adaptation performance 
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The one major advantages of this configuration appears in this design process. By ignoring item (i), one 
can apply it existing FOPID control system without configuring or changing any parameter of the 
FOPID controller. It allows easily upgrading of the operating FOPID control loops to MRAC-FOPID 
control system. 

A Theoretical Background of Multi-loop MRAC-FOPID Control Loops 

Let’s assume a closed loop FOPID system that is well-tuned and in a fault-free condition. 
Fractional-order transfer function model of this system can be expressed in a general form as 
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The transfer function of FOPID controller is commonly written by 
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In this case, the reference model of MRAC loop (outer loop) can be expressed as [9,10], 
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After determination of the reference model, MRAC loop, which performs well-known MIT rule for 
adaptation, is connected to inner loop (closed loop FOPID control loop) by applying input-shaping as 
shown in Figure 1.  After connecting the outer loop to the inner loop, the input of closed loop system 
becomes ru =~ , where the adaptation gain   is determined according to the MIT rule that performs 
a gradient descent optimization in order to minimize the cost function, given by, 
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The MIT rule for MRAC design was expressed for this system as [9,10] 
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Then, by considering Figure 1, one can write the model error in the form of 
rsTrsTyye mmm )()( −=−=  .     (6) 

Here, the sensitivity derivative of the system is found as 
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where )(sT  represents the current transfer function of the closed loop FOPID control system (inner 
loop) in operation. When the reference input is substituted with )(/ sTyr mm=  in equation (7) and the 
sensitivity derivative can be rearranged as 
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By using it in equation (5), the MIT rule for the update of adaptation gain is written by 
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Numerical and Experimental Results 

We tested the multi-loop MRAC-FOPID structure in experimental Magnetic Levitation (ML) system. 
ML system introduces a highly nonlinear control problem. Figure 3 shows a picture of experimental ML 
system that was developed by INTECO. Experiments were conducted in Center for Intelligent Systems, 
Tallinn University of Technology. 

 

 

 

 

 

 

 

Fig 3. A picture of ML experimental system [10]. 

Figure 4 shows numerical results that were obtained from simulation of this experimental system in 
MATLAB/Simulink environment. The figure compares response of the MRAC-FOPID structure and 
response of the conventional FOPID structure in ML control problem. The set-point of ML system is 
configured 0.012 m. After settling to level of 0.012, a step disturbance was applied at simulation time 
200 sec. We observed that the multi-loop MRAC-FOPID control structure can considerably improve 
the disturbance rejection control performance when compared to the conventional FOPID control 
system.  

 

 

 

 

 

 

 

 

Fig 4. Simulation results that demonstrates disturbance rejection of the MRAC-FOPID structure and 
response of the conventional FOPID structure in ML control problem [10] 

Figure 5 shows the experimental results obtained from experimental ML control system. In this system, 
the MRAC loop (outer loop) was first disabled and ML system output (the level of ball), control law 
(controller actions) were measured by applying square waveform input disturbance signals. Then, 
MRAC loop (outer loop) was enabled and the same kinds of measurements under the same condition 
were carried out. We observed that multi-loop MRAC-FOPID (MRAC enabled) can enhance control 
performance.   
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Fig 5. Experimental results obtained from control of experimental ML control system by using the multi-
loop MRAC-FOPID (MRAC enabled) and the conventional FOPID control (MRAC disabled) [10] 

 

Conclusions 

Our experimental and theoretical finding indicates that multi-loop MRAC-FOPID control structure can 
improve the robust control performance of the conventional FOPID control loops. For practical point of 
view, this structure also presents advantages of an easy adaptation to existing control loops via a closed 
loop model identification task.  
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Introduction 

After capturing the attention of both healthcare professionals and research groups, misuses of chronic 
pain and pain in general have witnessed a huge leap forward in our understanding. This is due to the 
further insights into the mechanistic underpinnings of pain, but assessment and management of pain 
remains extremely challenging from a clinical management perspective [1]. 

Because pain is a complex, multidimensional concept that relies most on patient’s self-evaluation and 
psycho-emotional-behavioral reports, it cannot be measured or assessed directly [2]. The naturally 
subjective nature of pain requires the use of comprehensive practices to accurately assess an individual’s 
degree of pain he/she experiences at the respective moment. The currently main topics of research 
consider the following objective: to develop an effective objective measure of pain by considering 
multiple aspects of the pain experience and multiple approaches for miscellaneous types of population 
and settings. 

Recently, despite that the number of studies for objective assessment and effective treatment of pain has 
grown substantially, the gap between research and clinical application is notable. Clinicians are still 
currently unable to apply an effective and deterministic approach to assess pain in hospitals and clinical 
environment that reflects the real level of pain, whose personalized aspects cannot be predicted. Despite 
continuous attempts to improve the available pain assessment tools and treatments, many patients remain 
insufficiently relieved [3], while over-dosing is a prevalence in routine environment, i.e. the ‘rather too 
much than too little’ concept. 

According with recent studies, pain is identified by the American Pain Society (APS) as the fifth vital 
indicator in diseases and diagnosis chart along with temperature, blood pressure, pulse and respiration 
rates [4-7]. Recording the pain intensity as ‘the fifth vital sign’ aims to increase awareness and utilization 
of objective pain assessment. Although clinicians have a great fundamental knowledge to determine pain 
treatment based on the recognized causes and physio-pathological mechanisms of pain, an effective 
objective measurement is needed to overcome the deficiencies in extracting the level of pain in complex 
environments such as hospitals (in intensive-care, post-operative, post-anesthesia units). Categorizing 
pain is defined as an instrument to facilitate pain evaluation and treatment, even if it is not for diagnosis. 
The common ways to classify pain may overlap, as those could be multidimensional or based on a single 
dimension of the pain experience.  

The concepts of fractional calculus are introduced in this medical field for the first time uniquely by our 
group and aim to provide natural solutions to the modelling aspects of nociceptor pathway considering 
physiological details of the human body. The paper presents a conceptual framework able to motivate the 
choice for the fractional tools in a biomedical context. Moreover, this is substantiated by the obtained 
experimental results, exhibiting features of fractional order systems. To author’s knowledge, such 
features are firstly reported in this paper. 
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Objectives Assessment of Pain Levels 

Basic and clinical research on pain has provided progressive and continuous advances in the last decades 
[8], especially with regards to a most adequate definition of pain theory and better understanding of the 
mechanisms and classification of pain. Focusing on those approaches represents the foundation for a 
comprehensive assessment of pain and treatments used further in pain management. 

Assessment of pain should take into consideration physiological, psychological and environmental 
factors to accurately indicate the existence of pain. Reliable tools for assessment should ensure patient’s 
experience of a safe, effective and individualized pain management along with an appropriate therapy 
to a patient’s response [9], i.e. ideally a personalized pain management framework. 

Existing approaches to the evaluation of pain level include verbal and numeric self-rating scales, 
behavioral observation scales and physiological responses. Subjective tools performed by healthcare 
professionals to assess pain are: Verbal Rating Scales (VRSs), Numerical Rating Scales (NRSs), Visual 
Analog Scales (VASs), Faces pain scales, McGill Pain Questionnaire, Behavioral Pain Scale (BPS), 
Critical-Care Pain Observation Tool (CPOT). 

Despite the great efforts that have been deployed in the last decades in order to find adequate ways to 
objectively measure pain levels in patients and how anesthetic drugs affect a patient’s response, no gold 
standards exist for the assessment of nociception/anti-nociception balance [4]. 

Nowadays, a variety of monitoring systems are available to provide an efficient way to assess pain in 
(quasi)real-time. Some of them have been commercialized during the last decade, although not widely 
used in hospitals by clinicians due to unreliability. There are several objective technologies for pain 
assessment in clinical evaluation, but none of them are use in daily practice. Recently increased efforts 
in developing objective measures of pain have resulted in new methods addressing the issue. Recent 
works related to bioimpedance investigate the muscle electrical properties in patients with low back pain 
[10] or chronic neck pain [26]. Evaluation of the musculoskeletal pain (pressure pain threshold on 
myofascial trigger points) has been observed to be corelated with the electrical impedance of the torso 
[11]. Also, the diagnosis of muscle-strained acute lower back pain could be potentially done by 
exploring changes in the electrical properties of muscle tissue. This novel technique is bio-impedance 
based and has been demonstrated as effective in the assessment of neuromuscular diseases. So, 
bioimpedance could be associated with the physiological properties of muscles, as different pathologies 
change the normal ones by inflammation or local swelling. 

Proposed Methodology 

ANSPEC-PRO device 

The entire prototype of ANSPEC-PRO device was created in the Research Group DySC (Dynamical 
Systems and Control) from Ghent University.  

ANSPEC-PRO is a measurement device for continuous monitoring of changes in skin impedance as a 
function of an applied stimulus. The approach is based on the idea that a pain stimulus can be detected 
from a change in skin impedance as a function of time and frequency. The alteration of the extracellular 
fluid matrix composition on the nociceptor pathway facilitates the electro-chemical channel 
communication. Electrical variability in the electrical carrier throughout the signaling pathway, 
originated by mechanical nociceptor stimulation, affects the response of the skin related in impedance 
values. Based on this hypothesis, ANSPEC-PRO device has been developed as a proof of concept. The 
details have been published in [12].  

The excitation signal is a multisine signal with 29 components in the frequency interval 100-1500 Hz, 
with step interval of 50Hz. This signal is sent to the volunteer and the corresponding output is acquired. 
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The sampling frequency is 15 kHz. The multisine signal is sent with an amplitude of 0.2mA, still a factor 
5 below the maximum allowed for patient safety. The measured signals are filtered for noise prior to 
apply non-parametric identification methods [13]. Given the input is of sinusoidal type, impedance is a 
frequency dependent complex. Classical periodogram filtering technique has been applied with no 
overlapping interval, with windowing function Blackman implemented in Matlab environment [13]. The 
impedance is then evaluated every minute from online data streaming and plotted against frequency. 
This is then a frequency response either in complex form (Real and Imaginary Parts), either in Bode plot 
form (Magnitude and Phase). 

The procedure followed for measurements and the preliminary results are presented hereafter. Pain 
intensity was recorded with ANSPEC-PRO prototype and further analyzed with proposed methodology. 
The set-up of the device for doing the investigational tests is showed in Fig. 1. 

 

Fig. 1. A snapshot of the non-invasive ANSPEC-PRO device for investigational tests 

With the novel device available, measurements have been performed on healthy adults. For the 
measurements, three electrodes were placed on the palmar side of the hand: two current-carrying 
electrodes (white, red) and one pick-up electrode (black). All measurements were made in a single 
laboratory, using the same equipment under identical experimental conditions for 8 different volunteers 
under the supervision of the professor. All authors have followed the official guidelines of good clinical 
practice. 
Mathematical Model 
For real-life applicability and engineering approach, the created and validated fractional model is 
important to create an engineering background for pain evaluation. The results are model-based simulated 
and evaluated in order to best describe the physiological pain processes with minimally parametrization, 
flexibility, easily use and computation.  
The model has been firstly introduced in [12]. Application of fractional calculus in biology and medicine 
has shown good characterization of complex phenomena with a startling simplicity, rising great interest 
in the latest trends [14-18]. In this paper is examined how the concept of a fractional dimension can be 
applied to time series resulting from physiological processes. The dynamical activity we observe in the 
natural pain process is related from one level to the next by means of a scaling relation. 
The physiological molecular phenomena involved in path transmission is illustrated in Figure 2. This 
include the multi-scale physiological stages during pain process. 
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Fig. 2 Analogy of the molecular changes to electrical ladder networks and diffusion mechanisms 

for pain pathway in healthy individual without drug treatment effects. 

 

The nociceptor pathway is characterized in terms of four processes: transduction, transmission, 
perception, modulation. Each of this segment of pathway is equivalent to a segment in electrical 
analogue and diffusion mechanism. This is the top layer of Figure 2. Consequently, following the 
mathematical convergence and using prior know-how on diffusion approximation terms, we have 
provided a lumped parameterization of this multi-scale model. Hence, the following Fractional Order 
Impedance Model (FOIM) is proposed. 

 ZFOIM(s) = R +
S

sα1
+

D

sα2
+ Msα3 (1) 

where 0 < α1,2,3 < 1 and R, D, S, M are real numbers. R is a calibration factor, S denotes transmission, D 
denotes transduction, and M denotes modulation and perception [12]. 

Notice that not all terms in this model are necessary significant at all times, as some of the 
physiological processes may be impaired in some conditions (e.g. analgesia will put zero the effect of the 
modulation and perception term in M). The units are arbitrary, as the model is defined as a difference to 
the initial state of the patient - due to the use of fractional derivatives - and not as absolute values. This 
enables patient specificity since no generic model is assumed to be valid and thus broadcasts a new light 
upon the interpretation of such models. This model uses the fewest parameters that need to be estimated 
– i.e. seven parameters, while being a personalized model of the individual.  

Results 

The method and mathematical model presented based on elements of fractional calculus are uniquely 
defined for each individual studied, analyzing the skin bioimpedance as an indication of 
absence/presence of nociception.  

Every 60 sec, the impedance is calculated and plotted against frequency, by means of its real and 
imaginary parts. The complex impedance is then normalized and analyzed per interval of pain (P) or no 
pain (NP), as illustrating the response of the nociceptor excitations.  

Impedance of one individual is depicted in Figure 3. It is observed that the lines that denote the first (P1) 
and second (P2) pain interval responses are very close to the corresponding non-pain intervals: NP3 and 
NP4. This suggests that NP3 and NP4 indicate the presence of pain latency (i.e. memory pain). However, 
the interval P3 overlaps with NP1 and NP2, suggesting either of the two possibilities: i) the mechanical 
pressure was lower, or ii) the ear is less sensitive to nociceptor stimulation. Hence, even in absence of 
nociceptor stimulation, the impedance indicates presence of pain pathways because of the pain memory 
effect. 
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Fig. 3. Individual frequency response of the normalized impedance, 
evaluated for “pain”/”no pain” intervals . 

Studies have demonstrated that the impedance increases with vasoconstriction and fluctuations in the 
blood flow determined by the cold water [35]. Same studies show that cold-water test stimulates also the 
nociceptors, which in term causes sympathetic activation. Thus, vasoconstriction appears also in areas 
that are not directly exposed to cold and bioimpedance is influenced. 
An iterative identification procedure has been performed in order to fit the model to the measured data. 
The result of the nonlinear least squares identification method applied iteratively for estimating the 
fractional order impedance model (FOIM) values, applied on a random measurement obtained in this 
research, is given in Figure 4 for one test interval. The fitting was obtained for the same individual, using 
the (1) FOIM model. More details regarding the identification method can be found in [12]. The results 
of following impedance values in all 8 volunteers are depicted in Figure 5. As expected, the biological 
tissue exhibits a well-known feature of the fractional order systems, i.e. the phase constancy. Indeed, in 
[18] it has been shown that neuronal ladder network electrical model leads to phase constancy. In 
nociceptor pathway, this is clearly present as a dominant part of the multi-scale phenomena taking place 
while stimulus is applied. The latency observed is yet a subsequent feature of such distributed systems. 

 

Fig. 4. FOIM results for one volunteer, using protocol #1. Impedance in its complex representation.  

Analysis for volume and length of neuronal networks are not available in mathematical form of 
parametric models, but this may not be relevant in the context of pain assessment. As we are not interested 
to locate pain origin, this information may not be necessary. The sole purpose is to evaluate the presence 
and level of experienced pain as to aid in the decision process of pain management and drug therapies.  
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This last step in correlating the existence of pain with various levels of pain has not been assessed in this 
paper as all applied stimuli had same intensity. This will be further investigated, taking into consideration 
a variety of patients types measured during future clinical trials, with different biometric and clinical data.

 

 

 

 

 

 

 

 
Fig. 5. Absolute values of the impedance |Z|, evaluated for “pain”/”no pain” intervals. 
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Conclusions and Future Work 

This paper presents the first steps to prove the hypothesis that the developed prototype ANSPEC-PRO 
and the proposed methodology can differentiate between pain and no pain states. From the preliminary 
results presented here, it follows that the main hypothesis evaluated for mechanical and cold pressures 
test has been validated. The next step is to correlate the existence of pain with various level of stimulation 
as to determine a relation or an index suitable for reporting pain levels. 
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Introduction 
The emerging concepts of fractional calculus (FC) in bi- ology and medicine have shown a great deal 
of success, explaining complex phenomena with a startling simplicity [1,2]. It is clear that a major 
contribution of the concept of FC has been and remains still in the field of biology and medicine [3]. 
(Fractional calculus generously al- lows integrals and derivatives to have any order, hence the 
generalization of the term fractional-order to that of general-order. Of all applications in biology, linear 
viscoelasticity is certainly the most popular field, for their ability to model hereditary phenomena with 
long memory [4]. Viscoelasticity has been shown to be the origin of the appearance of FO models in 
polymers [5] and resembling biological tissues [6,7]. 

Viscoelasticity of the lungs is characterized by compliance, expressed as the volume increase in the 
lungs for each unit increase in alveolar pressure or for each unit decrease of pleural pressure. The most 
common representation of the compliance is given by the pressure-volume (PV) loops. Changes in 
elastic recoil (more, or less, stiffness) will affect these pressure-volume relationships. These changes are 
fueled by structural variations during the progress of age, or pathology, or both. In clinical terms, this is 
known as airway remodelling.  

The term airway remodeling refers to the process of modification and sustained disruption of structural 
cells and tissues leading to a new airway-wall structure with implicit new functions. Airway remodeling 
is supposed to be a consequence of long-term airway diseases. Some studies suggest that the remodeling 
may be a part of the primary pathology rather than simply a result of chronic inflammation [4]. Of crucial 
importance in this quest to understand airway remodeling is the composition and structure of the lung 
tissue [8,9]. The composition and structure determines the mechanical properties of the lungs. Structural 
changes will induce alternations in tissue elasticity and viscosity. 

This task aims to determine a correlation between the structural changes occurring in the lungs and 
variation in the fractional order value of an impedance model (FOIM). The next section will provide a 
brief clinical perspective of airway remodelling. The third section presents the electrical analogy to 
airway models and discusses the effect on the model parameters due to the changes in morphology. The 
fourth section presents the simulation study of these changes and their effects on the fractional order 
value. A conclusion section summarizes the main outcome of this work. 

Structural Changes in the Lungs with Disease 

If a failure in the nominal operation and function occurs in the lungs, the adaptation mechanism will be 
triggered in an attempt to ensure species survival. This implies ensuring a minimum of vital capacity, 
which is a balance between changes in alveolar pressure and lung volume during the breathing process. 
As a defensive mechanism to external agents, the airways and the parenchymal tissue may undergo 
inflammation, constriction, fibrosis, etc. Structural alternations introduced by pathological processes are 
traditionally divided into three layers: the inner wall, the outer wall and the smooth-muscle layer. The 
inner wall exist of the epithelium, basement membrane and submucosa, while the outer layer consists 
of cartilage and loose connective tissue between the muscle layer and the surrounding lung parenchyma. 
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In COPD (chronic obstructive pulmonary disease), major structural alternations occur in the small 
bronchi  and membranous bronchiole (airway diameter< 2 mm). Changes occur around the supporting 
cartilage and bronchial glands in the peripheral airways ( 2 mm diameter). Here, the thickening occurs 
mainly in the inner wall area of the large airways [4,9]. 

The most important changes in asthma are located in the conducting airways (i.e. levels 1-16), which 
can thicken up to 300%. Asthma patients have thickened segmental and subsegmental bronchial walls 
over their entire size rage. This thickening is dependent on the degree of the disease, more severe and 
older patients will depict these characteristics more than young patients [4,10]. In asthma, the 
inflammatory reactions take place in the higher part of the airways than in COPD. Unfortunately for 
COPD patients, the airway obstruction that accompanies these changes is resistant to medication which 
makes the changes persistent. By contrast, in asthma the inflammatory processes can be controlled by 
the use of corticosteroids. There are also important differences in the remodeling of the extracellular 
matrix and the role of proteolytic enzymes and growth factors which lead to specific airway remodeling 
results by disease. More clinical information about inflammation mechanics in airway remodeling can 
be found in (Berg (2002)). For remodelling effects in asthma, an important role is played by the degree 
to which the smooth muscle surrounds the airway lumen.  

Once an alveolar wall starts to rupture in COPD, the stress the original wall carried is redistributed to 
the neighboring walls. If this stress is high, a single rupture will induce a cascade of ruptures and serves 
as a positive feedback for further breakdown. It is obvious that there is a point beyond which the 
structure-function relationship cannot return to the healthy condition. It is therefore useful to correlate 
these changes with model parameters for analysis. 

Analysis 

By analogy to electrical networks, one may consider voltage as the equivalent for respiratory pressure 
P and current as the equivalent for air-flow Q. Electrical resistances Re may be used to represent 
respiratory resistance that occur as a result of air-flow friction in the airways. Similarly, electrical 
capacitors Ce may represent volume compliance of the airways which allows them to inflate/deflate. 
We will discuss in this section their definitions as a function of morphology and their role within the 
airway remodelling process. 

Parameters 

In [11] was developed the electrical analogy to transmission lines for the mechanical parameters in the 
elastic and viscoelastic airways. The model was based on the geometrical parameters: radius and wall 
thickness on the mechanical characteristics of the airway tube: complex elastic moduli (given by its 
modulus and angle) and Poisson coefficient and on the air properties: viscosity and density. A detailed 
mathematical explanation in given in [12]. The values for airway radius, thickness, elastic moduli, etc. 
have been used as those published in [12]. The resistance and compliance per branch are depicted in 
Fig. 1 left. The consecutive ratios between these branches for resistance and compliance are given in 
Fig. 1 right. It can be observed that the ratios of resistance are above 1, indicating an increase with every 
level - this is obvious, since we are looking at each branch solely, and the cross-sectional area is 
diminishing. The compliance is below 1, indicating that it increases, as a result of the elasti moduli, with 
more soft tissue and less cartilage percentage at lower branches in the respiratory tree. This is indeed 
the case, since these lower airways are those which need to expand during inspiration (i.e. alveolar levels 
where diffusion occurs). 
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Fig. 1: Evolution of resistance and compliance values per branch in normal airways - left; Evolution of 
the ratios in normal airways with consecutive branches in consecutive airway levels - right. 

Changes in the airway radius, wall thickness and elastic modulus 

Here we investigate the effect of changes in the airway radius, airway wall thickness and elastic modulus 
of the tissue. These changes are significant for obstructive disease such as asthma and COPD. However, 
the most important are the irreversible changes in COPD, since these will always mark the respiratory 
impedance and be visible in all lung function tests. Changes in the respiratory zone (i.e. aiways below 
level 16) in the distal airways and lung parenchyma. First, let us look at changes in the airway thickness. 
This may occur since the lung begins to ’protect’ itself from the damaged cells in the airway soft tissue. 
In time, fibrosis occurs and thickness may increase significantly. Figure 2 left depicts the variation in 
the resistance and compliance ratios per branch with each airway level in case of increased changes in 
thickness with 50%. Second, the change in thickness usually induces a change in the radius. This become 
obstructed and mucus may result from the inflammation of the airway soft tissue. Mucus secretion may 
obturate totally parts of the airway, such that produces exacerbations and the patient will cough with 
sputum secretions. Figure 2 right depicts the variation in the resistance and compliance ratios per branch 
with each airway level in case of decreasing the radius with 50%. 

  

Fig. 2: Evolution of the ratios in thickened airways with consecutive branches in consecutive airway 
levels - left; Evolution of the ratios in thickened and obstructed airways with consecutive branches in 

consecutive airway levels – right 

Finally, the changes in thickness and radius are usually resulting in a change in the elastic modulus of 
the soft tissue and the cartilage tissue in the airways. Typically, fibrosis will reduce the overall elasticity 
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of the modulus. Figure 3 depicts the variation in the resistance and compliance ratios per branch with 
each airway level in case of stiffening the soft and cartilage tissue with 30%. It is obvious that the 
changes with most impact are those related to obstruction. Fibrosis, a slow process, will also contribute 
to the increase in resistance and thus will impede the air passage through the airways. The wall ruptures 
discussed in Figure 1 will eventually decrease the resistance because the air will be able to pass easier 
through. 

 

Fig. 3Evolution of the ratios in fibrotic airways with consecutive branches 
in consecutive airway levels. 

Results 

The respiratory tract can be approximated well by its electrical analogue, where current denotes flow 
changes and voltage denotes pressure changes. If the morphological structure of the lungs is preserved, 
then the quasi-fractal structure of the lungs may be employed, simplifying significantly the mathematical 
burden of the model. It has been shown in [12] that a ladder network with recurrent impedance elements. 
In the frequency domain, the fractional order will lead to a constant-phase behavior, i.e. a phase locking 
in the frequency range given by the convergence conditions [12]. Depending on the number of cells in 
the ladder (N), the constant phase behavior will emerge over a wider range of frequencies. This result is 
applicable to any kind of ladder network (airways, arteries, etc.). However, the fractional order value 
and coefficients will change according to the properties (morphology, geometry) of the system. For the 
changes discussed in the previous section, one may calculate the corresponding variations in the 
fractional order value n. Figure 4 shows the variations occurring in the magnitude and phase of the 
impedance with increasing values in the ratios of the resistance. 

The effect of decreasing compliance (i.e. increasing stiffness) will be opposite to that of increasing 
resistance. However, is the relative degree of changes between the two which dictates the increase or 
decrease of the fractional order parameter with the progress of the respiratory disease. 
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Fig. 4 Evolution of the impedance with increasing values of resistance ratios 

Conclusions 

It is straightforward to apply airway altering/remodeling effects in the simple model representation 
proposed here, but limitations should be taken into account. The major errors which may occur in this 
study are determined by the heterogeneity of the human lung, i.e. inter-subject variability can affect the 
morphologic values of airway radius, thickness, length and tissue elasticity. Another further 
simplification in our reasoning is considering negligible the effects from the branching angles. These 
angles influence the flow to change direction, may lead to an asymmetrical velocity profile, to develop 
a secondary flow in the daughter branches and the inner airway walls to be slightly stretched. The change 
in cross-sectional areas which occurs from parent to daughter branches in a bifurcation causes the fluid 
to undergo a deceleration and may cause separation of adjoining streamlines. However, this kind of 
information may be more useful to study airflow dynamics in aerosol deposition models rather than in 
lumped impedance models. 

A correlation between the structural changes occurring in the lungs and the corresponding variations in 
the fractional order value of an impedance model was provided. Discussion on variations in the wall 
thickness, cross-sectional area and elastic moduli in distal airways involved in respiratory process affect 
changes in the fractional order value have been also given. Two lumped models were discussed: i) a 
theoretical model derived from morphological information and ii) an identified lumped parametric 
model. The relationship between fractional order term and heterogeneity in the lungs has been related 
to changes in viscoelasticity. Our results indicate that a correlating analysis is possible for various 
degrees of obstruction and effects may be directly related to the identified fractional order value. 
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Introduction 

The emerging targeted drug delivery concept is an area of the nanomedical sphere focused on applying 
localized treatment to isolated areas. Many advantages distinguish between faster action with less 
administered substance and reduced side effects. Instead of tainting the body with an increased amount 
of substance spreading throughout the entire anatomical frame, the targeted approach aims at fathoming 
the problem in a secluded manner [1], [2]. The novelty of the present study lies in bridging the 
nanomedical and the applied control engineering fields by tackling the issue of the carrier nanorobot 
able to deliver the needed treatment in the focused areas. The carrier unit is upsized to a scalable robot 
with autonomous submerged capabilities used to determine and experimentally validate the interaction 
between the carrier and the vascular environment, while also providing a controlled movement in terms 
of velocity and position. The dynamics of the carrier robot are modeled using a novel approach on 
accurately modeling physical phenomena lying in the fractional calculus domain [3]. Fractional calculus 
provides better understanding of the surrounding world by eliminating the limitations procured by 
integer order differentiation [4] proving superiority in modeling of viscoelastic characteristics [5], [6]. 

Controlling the obtained complex fractional order model of the dynamics of the robot shouldn’t be 
limited to classical integer order controllers. The classical Proportional Integral Derivative (PID) control 
is a particular case of the extended, more flexible and complex fractional order control perspective.  
Fractional order controllers prove superiority in terms of obtained performance both in the transitory 
and steady-state regimes by providing more complex control with increased degrees of freedom, capable 
of honoring a larger number of performance specifications for the chosen process [7]-[9]. 

Experimental Platform 

The experimental platform has been designed and built at the Technical University of Cluj-Napoca in 
collaboration with Ghent University. The main components distinguish between the vascular platform, 
scalable submersible and the concentration measurement unit. The submersible is inspired from the field 
of Automated Underwater Vehicles (AUV) [10] in terms of operability and physical characteristics with 
additional biomedical singularities. The robot has been designed such that it’s ellipsoidal shape reduces 
the drag effect while moving in a submersed environment. The submersible is equipped with a single 
Graupner 40mm3 blades propeller that acts as the thrusting and braking element of the system. The 
autonomous characteristic of the robot is given by embedded electronics consisting of a WI-FI module 
and microcontroller ESP8266 that registers acceleration data from the 9-DOF BNO055 IMU unit and 
controllers the propeller’s movement by sending PWM signals to a geared DC motor.  The concentration 
is measured using the DropSens DS550 which is a screen printed platinum electrode capable of 
measuring the glucose concentration of a liquid.  The measured concentration and its position are 
registered and sent via the Wi-Fi unit to an external server that logs the data for possible further analysis. 
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Also, the external server is capable of overriding the submersible’s autonomous movement through 
external PWM values, used just as a security assurance in case of emergencies. 

The robot described previously is introduced through the immersion point, travels through the tube 
resembling the vein and passes a vascular transition inside the artery. Ultimately, the robot is extricated 
through the extraction container. In a single test, the robot is capable of analyzing the concentration of 
the liquid at different positions. For the purpose of this study, the exact concentration values are 
irrelevant, only the abrupt changes are of interest. An experimental test is presented in Figure 1. At t = 
20 seconds, the concentration value drops from the original value to a much lower value. This has been 
realized experimentally by introducing a mixture of sugar and warm water inside the artery shortly 
before the robot’s pass through that area. The DS550 sensor, detects the change and the microcontroller 
logs the relevant data which is sent to the server. 

 

Fig. 1 Concentration and position data registered by the submersible in the circulatory system 

The targeted drug delivery concept [13] is applied to the system by offering a solution to treat the high 
concentration area in the following manner: the robot travels through the circulatory system until a blunt 
change in the concentration data is perceived identifying the area in need of localized treatment; the 
robot stops in the area of interest in order to perform the substance administration; when the 
concentration drops to normal levels, the robot continues it’s path through the circulatory system 
repeating the process. The present work focuses on stopping the submersible in the targeted area, while 
the drug administration application and dosage is ignored. Hence, the focal point of the study is to control 
the velocity and position of the robot in order to ensure fast and accurate action in the areas in need of 
treatment. 

Fractional-order Model and Control Tuning 

The motivation of searching for a fractional order model to characterize the dynamics of the 
submersible’s movement lies in the viscoelastic characteristic of the blood vessels disseminated through 
expansion and contraction. The dynamics of the submersible’s movement consist of expressing the 
movement along the longitudinal axis as a relation between the applied PWM to the propeller and the 
velocity/position of the robot. Since the position is the first order derivative of the velocity and a 
fractional order model is desired, the velocity profile is approximated through a fractional order transfer 
function resembling a second order model. 

The experimental fractional order identification consists of imposing the shape of the fractional model 
and optimizing the parameters such that the integral absolute error with respect to the experimental data 
is minimized. Initial conditions are provided for the fractional orders, the static gain as well as the 
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coefficients. The minimization is performed using the fmincon function provided by Matlab’s 
Optimization Toolbox. The optimization algorithm searches for a solution to minimize the absolute error 
between measured position data and the response of a possible candidate model. The test has been 
performed by giving a PWM duty ratio of 0.3 in a fixed period of 10 Hz. The obtained position model 
compared to the experimental data is presented in Figure 2. As can be seen, the model is successfully 
validated on the experimental data. 

 

Fig. 2: Identified fractional order position model validation on experimental data 

The main purpose of the controller is to travel with a specified velocity and to stop the submersible’s 
motion in a desired area. In order to do so, the velocity should drop to 0 as fast as the area is located and 
keep its position regardless of any disturbance. If the  absolute velocity of the submersible is 0 with 
respect to the liquid’s movement, the position of the robot is constant. The 

proposed control strategy is applied to the fractional order velocity model in order to stifle the movement 
of the robot with 0 steady state error, ensuring effective and accurate drug administration at the aimed 
spot. For this particular requirement, a fractional order Proportional Integrative (FOPI) controller is 
chosen. Several fractional order controller tuning procedures can be applied to determine the three 
parameters of the desired controller: kp, ki and lambda, such as the ones described in [7, 9]. The chosen 
control strategy is based upon frequency domain constraints imposed by taking into consideration the 
targeted drug delivery process’ requirements. 

Two design constraints are associated to a stable closed loop system with reduced settling time. This is 
realized by imposing the gain crossover frequency of the magnitude Bode plot and the phase margin of 
the open loop system with the FOPI controller. The third constraint is imposed such that the obtained 
controller overcomes particular traits of the circulatory system of every individual, requiring a certain 
degree of closed loop system robustness. The particularities of the blood flow are given by the ability of 
blood vessels to expand and contract, different blood viscosities or different blood flow profiles as a 
result of certain diseases or advanced aging [14, 15]. The robustness attribute is mathematically 
described by a constant phase in an interval comprising the gain crossover frequency. By imposing the 
open loop phase derivative as being 0, the phase margin of the system remains constant for certain 
process gain uncertainties, ensuring robust performance to small gain changes. 
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Results 

A fractional order PI controller is determined based on the tuning procedure presented in the previous 
subsection. When choosing the desired phase margin and the gain crossover several rules should be 
respected such that the obtained parameters have physical meaning [16]. The imposed phase margin is 
65o, while the gain crossover frequency is chosen as 6 rad/s. Solving the equations related to the 
magnitude, phase and phase derivative gives the FOPI velocity controller. The frequency response 
diagram proves that the imposed constraints are honored in Figure 3 left.  The controller is validated by 
its ability to reduce the velocity of the submersible to 0 in the arterial environment and restoring the 
velocity to the operating velocity after the area has been treated. Figure 3 right presents the behavior of 
the closed loop system with the computed controller overlaid on the uncompensated system behavior. 
Between 0 and 1 seconds, the velocity is restored from 0 m/s to 0.05 m/s. The efficacy of the controller 
can be clearly seen compared to the uncompensated system, especially in the case of the steady state 
error. For the time period between 1 second and 2 seconds, the control action acts as a breaking unit for 
the submersible. 

  

Fig. 3: Frequency response diagram of the closed loop system with FOPI controller – left; 
Velocity profile of the uncompensated process compared to the closed loop system – right 

The position evolution is presented in Figure 4 left. Between 0 and 1 seconds, the velocity of the robot 
settles around 0.05 m/s, causing a gradual position change. At t = 0.5 seconds, the velocity drops to 0 in 
order to obtain a fixed position for the submersible. The command signal computed by the FOPI 
controller is the PWM duty ratio applied to the motor with a fixed frequency of 10 Hz. The computed 
signal is plotted in Figure 4 right. The braking effect is visible at t = 1 second by rotating the propeller 
in the opposite direction. The command signal is limited between [-1,1] because of the PWM duty ratio. 
The simulated behavior of the closed loop system proves successful in improving the response of the 
submersible’s velocity and position, validating the obtained fractional order controller. 
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Fig. 4: Position of the uncompensated process compared to the closed loop system - left; 
Command signal computed with the FOPI controller – right. 

Conclusion 

The paper presents the modeling and control of a scalable robot fit for the targeted drug delivery field. 
The experimental setup resembling the circulatory system allows measurements of the fluid’s 
concentration and the submersible’s position. The interaction between the underwater robot and the 
surrounding environment in terms of velocity and position profiles is modeled using a complex 
fractional order model motivated by the viscoelastic characteristic of the blood vessels. For the obtained 
model, a fractional order PI controller is determined in order to improve the velocity and positioning of 
the robot with the purpose of delivering targeted treatment in the areas with different blood 
characteristics. The controller’s effectiveness is emphasized in terms of steady state error and stability 
while also having a certain degree of robustness to environmental changes. Future work includes 
comparison of the proposed tuning approach with other control options for velocity control. Also, a 
fractional order analytical model for the submersible’s position dependent on the non-Newtonian 
characteristic of the blood flow is going to be determined. The development of position control strategies 
to ensure that the submersible navigates to a given position in order to apply treatment and stays in the 
given position regardless of blood flow disturbances is taken into consideration. 
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Introduction 

In electrophysiological experiments, the neuronal membrane is considered to be equivalent to a resistor-
capacitor circuit, and it has been claimed that the dynamic behaviour of neurons can be more 
appropriately modelled by a non-ideal capacitor and/or inductor [1], in which voltage-current 
relationship is given by a fractional-order derivative. Several research results concerning biological 
neurons [2, 3] also suggest that mathematical models of neuronal activity could be improved by using 
fractional-order derivatives. Moreover, [4] advocates that the index of memory could be a physical 
interpretation of the order of a fractional derivative, which is in compliance with engaging fractional-
order operators in neuroscience modeling. 

Fractional-order membrane potential dynamics have confirmed their advantage in reproducing the 
electrical activity of neurons observed from an experimental point of view, as they are capable to 
introduce capacitive memory effects [5]. Very recently, [6] proposed a novel mathematical model of 
neuronal electromechanics employing fractional order derivatives of variable order to model multiple 
temporal scales, accounting for both local and nonlocal chemomechanical interactions observed 
experimentally [7]. 

Several types of fractional-order neuronal models have been investigated in the recent years: leaky 
integrate-and-fire model [8], Hindmarsh-Rose models [9, 10], Morris-Lecar models [11,12,13,14], 
FitzHugh-Nagumo model [15,16], Rulkov model [17] and the more general Hodgkin-Huxley model 
[18]. In this report, we summarize several results which have been obtained regarding this topic in the 
framework of the COST Action CA15225. 

The Morris-Lecar model 

Jacques Curie’s empirical law for the current through capacitors and dielectrics leads to the following 
capacitive current-voltage relationship for a non-ideal capacitor: 


 


= c

c m
d VI C
dt

 

where 0 < α < 1, the fractional-order capacitance with units (amp/volt)secα is denoted by 
mC  and dα/dtα 

represents a fractional-order differential operator [5]. 

Starting from the classical Morris-Lecar neuronal model [19] which describes the oscillatory voltage 
patterns of Barnacle muscle fibers, in [14] a fractional-order model has been constructed as follows: 
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where V is the membrane potential, N is the gating variable for K+, I represents the externally applied 
injected current, VCa , VK and VL denote the equilibrium potentials for Ca2+ , K+ and the leak current (VK 
< VL < 0 < VCa ), gCa , gK and gL are positive constants representing the maximum conductances of the 
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corresponding ionic currents, and  N  is the maximum rate constant for the K+ channel opening. Here, 
Cm(q1) = τq1/Rm is the membrane capacitance [5], Rm is the membrane resistance, τ is the time constant. 
The dimensional consistency of this model is guaranteed by including the fractional-order capacitance 

to the left hand-side of the first equation and of the term 2


g
N  to the right hand-side of the second equation 

of system (1). 

As previously considered in the literature, the following functions are considered in (1): 
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where Vi are positive constants, i ∈ {1,2,3,4}. 

Considering q2 = 1, the existence and stability of the equilibrium states of system (1) have been 
investigated in [14], revealing the co-existence of three branches of equilibria for a certain range of the 
externally applied current I. It has been also shown that while one of the branches of equilibria is 
unstable, for any value of the fractional order q1 , the equilibria belonging to the other two branches 
might be asymptotically stable for certain values of q1 and unstable for others. The existence of stable 
limit cycles has also been obtained, for certain values of I. Numerical simulations revealed that for the 
same value of I, as the fractional order q1 decreases, the number of spikes over the same time interval 
increases, which may correspond to a better reflection of the biological properties by the fractional order 
model. 

 

Figure 1: Limit cycles for the Morris-Lecar model (1) with various fractional orders q1 

The Fitzhugh-Nagumo model 

An extension of the classical FitzHugh-Nagumo model [20] involving Caputo fractional order 
derivatives has been investigated in [15]: 

 

3
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where v represents the membrane potential, w is a recovery variable, I is an externally applied injected 
current and 0 < q1 ≤ q2 ≤ 1. A similar model has been investigated by means of numerical simulations 
in [21]. 
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The existence of equilibrium states and their stability have been fully analyzed, leading to a full 
characterization of the set of fractional orders (q1 ,q2) for which a certain equilibrium of system (2) is 
asymptotically stable. Oscillatory and spiking behavior has also been observed, and linked to Hopf-like 
bifurcations caused by switches of the fractional orders (q1 ,q2) from the stable region to the unstable 
region (see Fig. 2). 

A discrete time counterpart of system (2), involving Caputo-type h-difference operators, has also been 
analyzed in [16], with the following form: 
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with 
3

( , )
3

= − +
vI v w w v  and ( )   = +w v v is a linear function. A similar theoretical analysis has been 

undertaken as for the continuous-time counterpart, revealing the effect of the fractional orders as well 
as the discretization step size h on the stability of the equilibria and the oscillatory and spiking behavior 
of system (3). 

The Rulkov model 

A discrete-time fractional-order Rulkov-type model, describing the spiking behavior of a biological 
neuron has been investigated in [17]: 
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where x represents the membrane potential, y is a gating variable, with 0 1 , σ acts as an externally 
injected current applied to the neuron and α > 0 is the coefficient of the nonlinear term of the Rulkov 
neuronal map and 0 < q1 < q2 ≤ 1. The same investigation pattern has been followed as for the previously 
considered model: a theoretical analysis of the equilibria and the characterisation of their stability 
properties in terms of the fractional orders q1 and q2, followed by extensive numerical simulations to 
exemplify the different dynamic regimes exhibited by the considered model. 

Conclusions 

In this report, several fractional-order neuron model have been reviewed which have been 
previously explored in the references [14, 15, 16, 17]. Numerical simulations which have been 
undertaken suggest that the fractional-order version several well-known neuronal models may 
provide a more realistic modeling of individual spikes compared to their classical integer-order 
counterparts. The frequency and amplitude of spikes can be successfully modulated by the 
fractional orders of the considered fractional-order derivatives. 

As a direction for future research, synchronization between these neuron models will also be 
investigated. A detailed bifurcation analysis will be performed involving bifurcations of limit 
cycles and it will be examined whether these models may exhibit chaotic behavior under the 
certain conditions. 
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Figure 2: Evolution of the state variables of system (2) (with parameter values: r = 0.08, 
c = 0.7, d = 1.2 and I = 1.25) for different values of the fractional orders. 
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